Investigate the Cosmological Evaluation of Spinor Field in 5-dimensional Bianchi Type 1 Cosmological Model with Layra Geometry
Keywords:
Lyra geometry, Bianchi Type-I, Spinor field, Anisotropic cosmology, 5D universe, Directional Hubble parameter.References
1. H. Weyl, Gravitation and Electricity, Preuss. Akad.
Wiss. Berlin, 465 (1918)
2. G. Lyra, Mathematische Zeitschrift, 54, 52–64
(1951).
3. D. K. Sen, Zeitschrift für Physik, 149, 311–323
(1957).
4. W. D. Halford, Journal of Mathematical Physics, 13,
1699 (1972).
5. D. K. Sen and K. A. Dunn, Journal of Mathematical
Physics, 12(4), 578–586 (1971).
6. D. K. Sen and J. R. Vanstone, Journal of
Mathematical Physics, 13, 990–993 (1972).
7. A. Beesham, Australian Journal of Physics, 41, 833–
842 (1988).
8. A. S. Jahromi and H. Moradpour, International
Journal of Modern Physics D, 27, 1850024 (2018).
9. M. A. Bakry, Astrophysics and Space Science, 367,
35 (2022).
10. V. K. Shchigolev and D. N. Bezbatko, Gravitation and
Cosmology, 24(2), 161–168 (2018).
11. G. Lyra, Über eine Modifikation der Riemannschen
Geometrie, Mathematische Zeitschrift, 54(1), 52–64
(1951).
12. D. K. Sen and K. A. Dunn, A scalar-tensor theory of
gravitation in a modified Riemannian manifold,
Journal of Mathematical Physics, 12(4), 578–586
(1971).
13. B. Saha, Nonlinear spinor field in cosmology,
Physical Review D, 64(12), 123501 (2001).
14. Greiner and J. Reinhardt, Field Quantization,
Springer-Verlag, Berlin (1996).
15. J. M. Overduin and P. S. Wesson, Kaluza-Klein
gravity, Physics Reports, 283(5–6), 303–380 (1997).
16. C. W. Misner, Mixmaster Universe, Physical Review
Letters, 22(20), 1071–1074 (1969).
17. M. P. Ryan and L. C. Shepley, Homogeneous
Relativistic Cosmologies, Princeton University Press
(1975).
18. B. Saha, Anisotropic cosmological models with a
perfect fluid and a spinor field, Physical Review D,
64, 123501 (2001).
19. P. S. Wesson, Space-Time-Matter: Modern Kaluza-
Klein Theory, World Scientific (1999).
20. D. K. Sen and J. R. Vanstone, The geometry of
spacetime in Lyra's manifold, Journal of
Mathematical Physics, 13, 1972.
Wiss. Berlin, 465 (1918)
2. G. Lyra, Mathematische Zeitschrift, 54, 52–64
(1951).
3. D. K. Sen, Zeitschrift für Physik, 149, 311–323
(1957).
4. W. D. Halford, Journal of Mathematical Physics, 13,
1699 (1972).
5. D. K. Sen and K. A. Dunn, Journal of Mathematical
Physics, 12(4), 578–586 (1971).
6. D. K. Sen and J. R. Vanstone, Journal of
Mathematical Physics, 13, 990–993 (1972).
7. A. Beesham, Australian Journal of Physics, 41, 833–
842 (1988).
8. A. S. Jahromi and H. Moradpour, International
Journal of Modern Physics D, 27, 1850024 (2018).
9. M. A. Bakry, Astrophysics and Space Science, 367,
35 (2022).
10. V. K. Shchigolev and D. N. Bezbatko, Gravitation and
Cosmology, 24(2), 161–168 (2018).
11. G. Lyra, Über eine Modifikation der Riemannschen
Geometrie, Mathematische Zeitschrift, 54(1), 52–64
(1951).
12. D. K. Sen and K. A. Dunn, A scalar-tensor theory of
gravitation in a modified Riemannian manifold,
Journal of Mathematical Physics, 12(4), 578–586
(1971).
13. B. Saha, Nonlinear spinor field in cosmology,
Physical Review D, 64(12), 123501 (2001).
14. Greiner and J. Reinhardt, Field Quantization,
Springer-Verlag, Berlin (1996).
15. J. M. Overduin and P. S. Wesson, Kaluza-Klein
gravity, Physics Reports, 283(5–6), 303–380 (1997).
16. C. W. Misner, Mixmaster Universe, Physical Review
Letters, 22(20), 1071–1074 (1969).
17. M. P. Ryan and L. C. Shepley, Homogeneous
Relativistic Cosmologies, Princeton University Press
(1975).
18. B. Saha, Anisotropic cosmological models with a
perfect fluid and a spinor field, Physical Review D,
64, 123501 (2001).
19. P. S. Wesson, Space-Time-Matter: Modern Kaluza-
Klein Theory, World Scientific (1999).
20. D. K. Sen and J. R. Vanstone, The geometry of
spacetime in Lyra's manifold, Journal of
Mathematical Physics, 13, 1972.
Published
2026-01-03
Issue
Section
Research Article