Jsearch
532

National Conference on Behavioural Economics and Intelligent Decision Systems for ‘ g f”%

Ady,
2,

2,
suon®

Climate Change and Sustainable Development -
Int. J. Adv. Res. in Artificial Intelligence and Machine Learning Reviews
Volume 2, Issue 1 - 2026

S

Review Article

Exploring the Role of Programming and Cogni-
tive Skills in Code Comprehension and Workload
Measurement

Divjot Singhj, Ashutosh Mishra?®, Ashutosh AggarwaP

123Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
DOI: https://doi.org/10.24321/3117.4809.202605

I NF O ABSTRACT

Corresponding Author:

Divjot Singh, Department of Computer Science
and Engineering, Thapar Institute of Engineering
and Technology, Patiala, Punjab, India

E-mail Id:

Dsingh_phd21@thapar.edu

How to cite this article:

Singh D, Mishra A, Aggarwal A. Exploring the
Role of Programming and Cognitive Skills in Code
Comprehension and Workload Measurement.
Int J Adv Res Artif Intell Mach Learn Rev 2026;
2(1): 188-193.

This study explores how programming and cognitive skills contribute to
software com- prehension and how programmers’ cognitive workload is
measured. The review shows that code reading, tracing, and debugging
are the most frequently studied programming skills, supported by
cognitive abilities such as working memory, reasoning, and problem-
solving. Coding tasks and comprehension tests are the most common
evaluation methods, while advanced tools such as fMRI, EEG, and eye-
tracking provide deeper insights into mental effort. Key parameters
used across studies include task accuracy, completion time, and brain
activity. However, research in this area still faces challenges such as
small sample sizes, self-report bias, high sensor costs, and difficulty
replicating real programming condi- tions. Overall, the findings highlight
the need for practical and scalable methods to better understand how
programmers think and manage cognitive load while working with
complex code.

KeYWOI"dS: Code comprehension, Cognitive skills, Coding tasks

Date of Submission: 2025-11-07
Date of Acceptance: 2025-11-18

behind the implementation.? Inefficient comprehension can
lead to errors, redundant work, and extended debugging
cycles, which in turn increase project costs and reduce
software reliability. Thus, understanding how developers
read, reason about, and mentally model code is essential
for improving maintenance productivity and minimising
technical debt in long-term software evolution.

Introduction

Software maintenance is a critical and enduring phase of
the software development lifecycle, often consuming the
majority of time, cost, and effort compared to initial devel-
opment.* Code comprehension serves as the backbone of
these maintenance tasks, enabling programmers to inter-
pret complex logic, trace dependencies, and anticipate the

potential impact of changes within large and often poorly ~ Code comprehension is not merely a mechanical process

documented systems.? Since maintenance engineers fre-
quently deal with legacy code written by others, the process
demands not only technical expertise but also the ability
to reconstruct the original design intent and reasoning

of reading code; it is a cognitively demanding activity that
engages multiple higher-order mental functions.* Cognitive
skills such as attention, working memory, abstraction,
reasoning, and problem-solving play pivotal roles in how

International Journal of Advanced Research in Artificial Intelligence and Machine Learning Reviews(ISSN : 3117-4809)

Copyright (c) 2025: Author(s). Published by Advanced Research Publications

Singh D et al.
Int. J. Adv. Res. Artif. Intell. Mach. Learn. Rev. 2026; 2(1)

programmers make sense of unfamiliar code structures.
Effective comprehension requires the ability to mentally
simulate code execution, integrate new information with
prior knowledge, and shift between different levels of
abstraction—from line-by-line syntax to overall program
logic.> These cognitive operations help developers identify
bugs, infer program behaviour, and predict outcomes of
code modifications. Empirical studies have shown that pro-
grammers with stronger cognitive flexibility and memory
retention exhibit faster and more accurate compre- hen-
sion performance, especially when dealing with complex
or nested code segments. Moreover, cognitive overload
can impair understanding and decision-making, leading
to lower efficiency and increased error rates. Recognising
the cognitive dimension of code comprehension not only
advances our understanding of programmer behaviour
but also informs the design of better tools, interfaces, and
training programmes aimed at reducing mental strain and
enhancing comprehension effectiveness during software
maintenance.

Literature review and research questions

Recent research on code comprehension demonstrates
an increasing convergence of educational, cognitive, and
computational perspectives. In programming pedagogy,
Denny et al.® and Smith et al.” advanced the Explain-in-
Plain-English (EiPE) framework, enabling students to express
code functionality in natural language while automated
pipelines and large language models (LLMs) generated
equivalent code for verification. These studies showed
that such tasks enhance conceptual understanding and
emerging prompt-crafting skills, though challenges of
subjectivity and large-scale deployment persist. Oli et al.®
further emphasised guided self- explanation through an
intelligent tutoring system, revealing significant learning
gains for low- prior-knowledge learners, while Stankov et
al.® introduced CodeCPP to automate fair code- tracing
assessments, though it highlighted concerns about metric
validity and bias in question design.

Cognitive and neuroimaging research complements these
pedagogical findings. Using fMRI, Peitek et al.’® showed
that program comprehension engages working memory,
attention, and language-processing regions, indicating
high cognitive load, while Peitek et al.** linked code com-
plexity and vocabulary size to increased mental effort and
reduced accuracy. Extending this perspective, Feitelson'?
critiqued conventional software complexity metrics, arguing
for human-centred validation to better represent actual
comprehension difficulty.

Recent studies also examined how human cognition aligns
with computational models. Li et al.®* found minimal cor-
relation between human eye-tracking data and LLM at-
tention patterns during code summarisation, suggesting

fundamental differences in reasoning processes. Zhu et
al.**demonstrated that imperceptible Unicode perturba-
tions significantly reduce LLMs’ com- prehension accuracy,
exposing model fragility. In industrial contexts, Bexell
et al.’> explored how professional developers compre-
hend unfamiliar codebases, identifying strategies such
as re- producing, localising, and simulating bugs, often
influenced by cognitive load and emotional re- sponses.
Collectively, these studies depict a cohesive progression
in code comprehension research that bridges educational
assessment, cognitive mechanisms, and the growing role
of intelligent systems.

Recent studies in programming and learning sciences reveal
how cognitive, emotional, and metacognitive processes
jointly shape how programmers develop understanding
and problem- solving skills. Lapierre et al.’ explored the
emotional and cognitive contrasts between novices and
beginners, showing that fear and cognitive overload neg-
atively affect programming performance, while greater
expertise moderates mental effort more efficiently. Sim-
ilarly, Paludo and Montresor (2024) emphasised that
integrating Al-based feedback in programming ed- ucation
can foster reflective and metacognitive learning. Their
Reflective Al Programming Lab encourages students to ar-
ticulate reasoning to Al agents, promoting deeper problem
comprehen- sion and critical reflection. Expanding on the
role of metacognition, Shekh-Abed?® analysed high-school
project-based learning, finding that students’ self-assessed
cognitive abilities often overestimate actual performance,
underscoring the need for direct and reflective assessments
of metacognitive self-knowledge.

On the cognitive front, Vettori et al. (2024)* conducted a
systematic review identifying key cognitive factors—such
as working memory, attention control, and metacognitive
aware- ness—that predict reading and code comprehension
in complex tasks. Peitek® contributed a neuro-cognitive
perspective, combining fMRI and eye-tracking to model
top-down and bottom-up comprehension strategies and
to visualise brain activation during code understanding.
Similarly,

Yeh et al.* employed EEG to detect differences in alpha and
theta brainwave patterns during program comprehension,
demonstrating that higher theta and alpha magnitudes
correspond to increased cognitive load. At a software-engi-
neering level, Chentouf? proposed a cognitive model-based
learning tool for teaching maintenance project staffing
decisions through problem- based and competition-based
learning, blending technical and non-technical skill devel-
opment.

Further, Arasteh et al.2?approached comprehension com-
putationally, using hybrid grey wolf and genetic algorithms
to cluster software modules, facilitating structural un-

ISSN: 2395-3802
DOI: https://doi.org/10.24321/3117.4809.202605

Singh D et al.
Int. J. Adv. Res. Artif. Intell. Mach. Learn. Rev. 2026; 2(1)

derstanding in maintenance contexts. These algorithmic
methods reduce coupling and enhance cohesion be- tween
modules, ultimately improving code comprehensibility.
Collectively, these works bridge metacognition, cognitive
measurement, and computational modelling, illustrating
how program- ming comprehension involves not just code
reasoning but also awareness, reflection, and emo- tional
regulation. Together, they point toward an interdisciplin-
ary paradigm in programming education—one that aligns
cognitive science, Al, and engineering to better understand
how programmers learn, think, and evolve.

In conclusion, the reviewed studies collectively emphasise
that effective code comprehension relies on a balanced
interplay between programming proficiency and cognitive
skill development. Programming skills such as code tracing,
debugging, and problem-solving provide the structural
foundation for understanding software, while cognitive
abilities govern how effectively program- mers interpret
and reason about code. Research across educational,
neuro-cognitive, and com- putational domains consistently
shows that stronger cognitive control and reflective aware-
ness enable programmers to manage complexity, reduce
cognitive overload, and adapt strategies to unfamiliar
problems. Thus, fostering cognitive skills alongside technical
instruction is crucial for nurturing deeper understanding
rather than surface-level code familiarity. As programming
increasingly integrates with intelligent systems and col-
laborative tools, the cultivation of higher- order cognitive
abilities will remain central to developing adaptive, analyt-
ical, and self-regulated programmers capable of thriving
in complex software environments.

Based on the conducted LR, some research questions have
been defined below:

1. RQ1.Which programming and cognitive skills are pre-
dominantly examined in contemporary research on
software comprehension?

2. RQ2. What different measurement methods have
been adopted to measure the cognitive work- load?

3. RQ3. What salient parameters are commonly ob-
served in the assessment of programmers’ cog- nitive
workload?

4. RQ4. What challenges do researchers encounter in
measuring the cognitive workload of pro- grammers?

Results and Discussion

The answers to posed research questions have been dis-
cussed below.

1. RQ1. Which programming and cognitive skills are
predominantly examined in contemporary research
on software comprehension? The analysis of the
reviewed studies

ISSN: 2395-3802
DOI: https://doi.org/10.24321/3117.4809.202605

Table |.Programming and cognitive skills widely used
by researchers

Skills Count

Code reading/tracing 15
Code explanation 6
Code debugging 4
Working memory 6
Critical thinking 2
Reasoning 4
Problem solving 3
Decision making 1

shows that code reading/tracing are the most frequently
examined programming skills in software comprehension
research as shown in Table 1. Most studies focus on how
programmers interpret and mentally follow the logic of
given code segments to understand their functionality.
This is expected since code reading forms the foundation
of comprehension and further programming activities
such as debugging and maintenance. Code explanation
and debugging are also widely studied, as they help in
understanding not only what the code does but also how
programmers reason about it or fix logical errors.

From the cognitive perspective, working memory is the
most commonly discussed factor influencing code com-
prehension. It helps programmers retain and manipulate
different parts of code while reasoning about control flow
and logic. Reasoning and problem-solving are also essen-
tial cognitive processes, as they support the ability to link
abstract program structures with functional outcomes. A
smaller number of studies address critical thinking and
decision-making, particularly in real-world or project-based
programming contexts. Overall, the findings suggest that
effective code comprehension depends not only on pro-
gramming proficiency but also on cognitive abilities such
as reasoning, memory, abstraction, and reflection.

2. RQ2.What different measurement methods have been
adopted to measure the cognitive workload?

The results indicate that coding tests and comprehension
tasks are the most commonly used methods to measure
programmers’ cognitive workload as shown in Figure 1.
These are practical, performance-based tools that allow
researchers to assess understanding through accuracy,
time taken, and error rate. Surveys and self-report ques-
tionnaires are also widely used to capture subjective per-
ceptions of mental effort and task difficulty.

Singh D et al.
Int. J. Adv. Res. Artif. Intell. Mach. Learn. Rev. 2026; 2(1)

16

14

12

10

Count
o

Coding
tests/tasks

Surveys/Self EEG
reporting

Eye-tracking fMRI EDA

Evaluation methods

Figure |.Distribution of evaluation methods used to
measure programmers’ cognitive workload

In addition to behavioural and self-reported measures,
several studies have used physiological tools to record
cognitive workload more objectively. Functional magnetic
resonance imaging (fMRI), electroencephalography (EEG),
and eye-tracking have been applied to measure brain activ-
ity and attention while participants read or debug code. A
smaller number of studies use electrodermal activity (EDA)
to capture emotional or stress responses during program-
ming tasks. Together, these findings show that researchers
are combining both traditional behavioral assessments
and advanced physiological methods to gain a deeper
understanding of mental effort in programming activities.

3. RQ3.What salient parameters are commonly observed
in the assessment of programmers’ cognitive workload?

The most frequently used parameters across studies are
test accuracy and time taken to com- plete programming
tasks Figure 2. These two behavioural measures provide
simple yet powerful indicators of comprehension per-
formance and efficiency. Accuracy reflects how well a
partici- pant understands or debugs a piece of code, while
task completion time gives an idea of how much cognitive
effort was required to reach that understanding. More
advanced studies have

introduced physiological and neural parameters such as
brain activation levels, pupil dilation, and eye fixation
patterns. These indicators help in identifying variations
in attention, focus, and mental workload. Some studies
also measure skin response as an indicator of emotional
or stress- related reactions during programming. Overall,
the parameters observed across studies combine perfor-
mance, physiological, and emotional aspects, providing a
comprehensive understanding of cognitive workload in
programming contexts.

4. RQ4. What challenges do researchers encounter in
measuring the cognitive work- load of programmers?

Although different tools and techniques have been devel-
oped to assess cognitive workload, researchers still face

several challenges in this area. One of the most common
issues is the small sample size in experimental studies,
especially those using sensors such as fMRI or EEG. These
tools are expensive and time-consuming, which limits the
number of participants that can be studied and reduces
the generalisability of results.

Another challenge is the bias that often occurs in self-re-
ported data. Participants may over- estimate or under-
estimate their perceived mental effort, which affects the
accuracy of subjective workload measures. The high cost
and technical complexity of using advanced sensors also
cre- ate practical difficulties, particularly in classroom or
natural programming settings. Finally, programming tasks
themselves add complexity to the measurement process, as
experimental code snippets are usually simplified and may
not represent real-world programming challenges. These
limitations highlight the need for improved, affordable,
and context-aware methods that can accurately measure
cognitive workload in realistic programming environments.

fixati Skin response
Eye fixation 4%

10%

Test accuracy
35%

Time taken

24%

Figure 2.Distribution of evaluation parameters
Conclusion

In summary, the analysis shows that most studies on soft-
ware comprehension focus on code reading, tracing, and
debugging as the main programming skills, supported by
cognitive abilities such as working memory, reasoning, and
problem-solving. Coding tasks remain the most common
approach to assess comprehension, while advanced tools
such as fMRI, EEG, and eye-tracking are increasingly being
used to capture deeper insights into mental effort. Accuracy
and task completion time are the most frequently used
parameters for evaluating cognitive workload. However,
challenges such as small sample sizes, bias in self-reporting,
high sensor costs, and the difficulty of simulating real-world
programming tasks continue to limit research outcomes.
Overall, the findings suggest that both programming and
cognitive skills play a vital role in code comprehension, and
future studies should aim to develop more realistic and
scalable methods for measuring programmers’ cognitive
workload effectively.

ISSN: 2395-3802
DOI: https://doi.org/10.24321/3117.4809.202605

Singh D et al.
Int. J. Adv. Res. Artif. Intell. Mach. Learn. Rev. 2026; 2(1)

References

1.

10.

Norman F. Schneidewind. The state of software main-
tenance. IEEE Transactions on Software Engineering,
(3):303-310, 2006.

Benjamin Floyd, Tyler Santander, and Westley Weimer.
Decoding the representation of code in the brain: An
fmri study of code review and expertise. In 2017 IEEE/
ACM 39th International Conference on Software Engi-
neering (ICSE), pages 175-186. IEEE, 2017.

Norman Peitek, Sven Apel, Chris Parnin, Andr’e Brech-
mann, and Janet Siegmund. Pro- gram comprehension
and code complexity metrics: A replication package of
an fmri study. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Pro-
ceedings (ICSE-Companion), pages 168—169. IEEE, 2021.
Noa Ragonis and Ronit Shmallo. The application of high-
er-order cognitive thinking skills to promote students’
understanding of the use of static in object-oriented
programming. Informatics in Education, 21(2):331-352,
2022.

Wei Li, Ji-Yi Huang, Cheng-Ye Liu, Judy CR Tseng, and
Shu-Pan Wang. A study on the relationship between
student’learning engagements and higher-order think-
ing skills in programming learning. Thinking Skills and
Creativity, 49:101369, 2023.

Paul Denny, David H. Smith IV, Max Fowler, James
Prather, Brett A. Becker, and Juho Leinonen. Explain-
ing code with a purpose: An integrated approach
for developing code comprehension and prompting
skills. In Proceedings of the 2024 ACM Conference
on In- novation and Technology in Computer Science
Education (ITiCSE 2024), pages 283-289, Milan, Italy,
July 2024. ACM.

David H. Smith IV, Paul Denny, and Max Fowler. Prompt-
ing for comprehension: Exploring the intersection of
explainin plain english questions and prompt writing.
In Proceedings of the Eleventh ACM Conference on
Learning at Scale (L@S 2024), pages 1-12, Atlanta,
GA, USA, July 2024. ACM.

Priti Oli, Rabin Banjade, Arun Balajiee Lekshmi
Narayanan, Peter Brusilovsky, and Vasile Rus. Exploring
the effectiveness of reading vs. tutoring for enhancing
code comprehension for novices. In Proceedings of the
39th ACM/SIGAPP Symposium on Applied Computing
(SAC 2024), pages 1-10, Avila, Spain, April 2024. ACM.
Emil Stankov, Mile Jovanov, and Ana Madevska Bog-
danova. Smart generation of code tracing questions for
assessment in introductory programming. Computer
Applications in Engineering Education, 31(1):5-25,
2023.

Norman Peitek, Janet Siegmund, Sven Apel, Christian
K"astner, Chris Parnin, Anja Beth- mann, Thomas Leich,
Gunter Saake, and Andr’e Brechmann. A look into

ISSN: 2395-3802

DOI: https://doi.org/10.24321/3117.4809.202605

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

programmers’ heads. |IEEE Transactions on Software
Engineering, 46(4):442-462, 2020.

Norman Peitek, Sven Apel, Chris Parnin, Andr’e Brech-
mann, and Janet Siegmund. Pro- gram comprehension
and code complexity metrics: An fmri study. In Pro-
ceedings of the IEEE/ACM International Conference
on Software Engineering (ICSE 2021), pages 1-13.
IEEE, 2021.

Dror G. Feitelson. From code complexity metrics to
program comprehension. Communica- tions of the
ACM, 66(5):52-59, 2023.

Jiliang Li, Yifan Zhang, Zachary Karas, Collin McMillan,
Kevin Leach, and Yu Huang. Do machines and humans
focus on similar code? exploring explainability of large
language models in code summarization. In Proceed-
ings of the 32nd IEEE/ACM International Con- ference
on Program Comprehension (ICPC 2024), pages 1-5,
Lisbon, Portugal, April 2024. ACM.

Bangshuo Zhu, Jiawen Wen, and Huaming Chen. What
you see is not always what you get: An empirical study
of code comprehension by large language models.
arXiv preprint, 2025.

Andreas Bexell, Emma S oderberg, Christofer Ryden-
f alt, and Sigrid Eldh. How do developers approach their
first bug in an unfamiliar code base? an exploratory
study of large program comprehension. In Proceedings
of the Psychology of Programming Interest Group
Workshop (PPIG 2024), pages 174-185, Lund, Sweden,
2024. PPIG. Supported by Ericsson AB, the Swedish
Foundation for Strategic Research (grant FFL18-0231),
and the Wallenberg Al, Autonomous Systems and
Software Program (WASP).

Hugo G. Lapierre, Patrick Charland, and Pierre-Ma-
jorique L’eger. Looking “under the hood” of learning
computer programming: the emotional and cognitive
differences between novices and beginners. Computer
Science Education, 34(3):331-352, 2024.

Giulia Paludo and Alberto Montresor. Fostering meta-
cognitive skills in programming: Leveraging ai to reflect
on code. In Proceedings of the 2nd International Work-
shop on Artificial Intelligence Systems in Education,
Bolzano, Italy, November 2024. University of Bolzano.
(© 2024 The Authors. Licensed under CC BY 4.0.

Aziz Shekh-Abed. Metacognitive self-knowledge and
cognitive skills in project-based learn- ing of high school
electronics students. European Journal of Engineering
Education, 50(1):214-229, 2025.

Giulia Vettori, Laura Casado Ledesma, Sara Tesone, and
Chiara Tarchi. Key language, cognitive and higher-order
skills for 12 reading comprehension of expository texts
in english as foreign language students: a systematic
review. Reading and Writing, 37:2481-2519, 2024.
Norman Peitek. A neuro-cognitive perspective of

21.

22,

23.

Singh D et al.
Int. J. Adv. Res. Artif. Intell. Mach. Learn. Rev. 2026; 2(1)

program comprehension. In Proceedings of the 40th
International Conference on Software Engineering
(ICSE "18 Companion), page 4, Gothenburg, Sweden,
2018. ACM.

Martin K.-C. Yeh, Yu Yan, Dan Gopstein, and Yanyan
Zhuang. Detecting and comparing brain activity in short
program comprehension using eeg. In Proceedings of
the IEEE Fron- tiers in Education Conference (FIE). IEEE,
2017. Supported by NSF Grant No. 1444827.

Zohair Chentouf. A cognitive system to teach software
maintenance project staffing. TEM Journal, 6(4):699—
706, 2017.

Bahman Arasteh, Mohammad Abdi, and Asgarali
Bouyer. Program source code comprehen- sion by
module clustering using combination of discretized gray
wolf and genetic algorithms. Advances in Engineering
Software, 173:103252, 2022.

ISSN: 2395-3802
DOI: https://doi.org/10.24321/3117.4809.202605

