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The digital transformation of healthcare has seen an increasing reliance 
on Artificial Intelligence (AI) and Machine Learning (ML) technologies 
to support diagnostic and decision-making processes. In a world where 
access to healthcare services remains uneven—especially in remote or 
economically underdeveloped regions—technology is being leveraged 
to fill the accessibility gap. The rise of intelligent applications has 
not only enhanced the accuracy of diagnostics but has also enabled 
faster, scalable, and cost-effective solutions.  This research introduces 
a lightweight neural network web application that identifies patterns 
within symptoms to suggest a probable disease. With a main focus 
on accessibility, affordability, and adaptability, the core of this system 
is a deep learning model trained on a dataset consisting of 5,000 
symptom-disease mappings covering 41 unique diseases. The model 
with regularisation has achieved an outstanding 96.54% accuracy. 
The neural network with users, whether healthcare professionals or 
general individuals, can interact with the application to input symptoms 
and receive a disease prediction within seconds. This serves as an 
initial assessment tool, prompting users to seek professional advice if 
necessary.  The system is designed to be lightweight using TensorFlow 
Lite, making it deployable even on low-end devices. It is hosted online 
to ensure ease of access and is free of cost, promoting inclusivity. The 
incorporation of a feedback mechanism—where users can correct 
wrong predictions—adds another layer of intelligence by laying the 
groundwork for reinforcement-based learning in future versions.  
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Introduction
Modern healthcare systems are often challenged by the 
growing demand for accessible and timely medical care. 
In countries with large populations or limited medical 
infrastructure, patients may face long waiting times for 
consultations or misdiagnosis due to overloaded healthcare 
providers. Additionally, the lack of access to medical 

professionals in rural or remote areas further exacerbates 
the problem.  In this context, AI-based diagnostic assistants 
offer an innovative solution. However, many existing 
tools are either commercially restricted, too complex for 
laypeople to use, or lack adaptability. This research seeks to 
address these shortcomings through the development of an 
AI-driven medical assistant that accurately predicts diseases 
based on symptoms, freely accessible, lightweighted and 
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fast, feedback-enabled, and scalable. The problem this 
research tackles can be summarized by the following core 
questions:

•	 Can AI be used to make accurate predictions about 
diseases based solely on symptom input?

•	 Can such a system be made accessible and intuitive 
enough for public use?

•	 Can feedback from users be used to improve and adapt 
the model over time?

Neural Networks
A neural network is a machine learning system designed 
to mimic the organisation of the human brain. It consists 
of interconnected layers of nodes known as neurones. 
The input layer receives raw data, and the output layer 
produces the final output. Computation occurs in the 
hidden layers, which transform the input into the output.1 

A neural network’s identification of patterns in data by 
adjusting the weights of connections between neurones 
is the most important objective of using it. During training, 
the network receives a set of labelled samples and updates 
its weights based on the differences between predicted 
and actual output. After training, the network can be used 
to make predictions or decisions using new input data.2

Neural networks have a number of applications in various 
domains, such as robotics, natural language processing, 
speech recognition, image recognition, and many more. 
They have an excellent performance in tasks involving 
complex and multidimensional data, such as visual or 
auditory information. It is challenging and impossible 
for traditional machine learning approaches to extract 
the features in data that a neural network can extract 
by recognising patterns in data. Common types of 
neural networks include feedforward neural networks, 
convolutional neural networks (CNNs), and recurrent neural 
networks (RNNs).3 Feedforward networks are among the 
simplest types and are often used for classification tasks. 
RNNs, on the other hand, are well-suited for natural 
language processing tasks involving sequential input, such 
as text or speech. Moreover, CNNs are employed for tasks 
related to image recognition and classification.4

Flask
Flask is a lightweight and flexible web framework written 
in Python for facilitating the rapid development of web 
applications. It follows the micro-framework philosophy, 
meaning it provides essential tools for building web 
applications while leaving developers free to choose 
additional extensions as needed. Its simplicity, combined 
with extensive community support and a wide ecosystem 
of extensions, has made Flask a popular choice among 
developers for creating APIs and full-stack applications 

(Grinberg, 2018).5 This research leverages Flask to build 
the backend of the Disease Diagnostic System.

Streamlit
Streamlit is an open-source Python library that enables 
developers and researchers to create interactive and 
data-driven web applications with minimal effort. Unlike 
traditional web frameworks, Streamlit is designed 
specifically for data science and machine learning workflows, 
allowing users to turn Python scripts into shareable web 
apps with just a few lines of code. Its simple syntax, widget 
integration, and real-time data visualisation make it a 
valuable tool for rapid prototyping and presenting analytical 
results. Streamlit emphasises ease of use and integration 
with popular Python libraries like NumPy, Pandas, and 
TensorFlow (Streamlit Inc., 2022).6

Related Work 
Predicting diseases using neural networks in the healthcare 
field has been a subject of extensive research. A number of 
studies have explored the application of neural networks 
in disease prediction, demonstrating promising results. 
According to Ashfaq et al.7, a convolutional neural network 
(CNN) was employed to predict the development of 
diabetic retinopathy. The model achieved high accuracy 
in diagnosing the disease based on retinal images. Another 
study done by Dong et al.8 focuses on the importance of 
targeted interventions for high-risk patients to reduce 
hospital readmissions and healthcare costs. The researchers 
propose a deep learning framework that combines both 
human and machine-derived features in a sequential 
manner using a cost-sensitive LSTM model to predict the 
risk of readmission, achieving an area under the curve (AUC) 
of 0.77. The incorporation of sequential trajectories had 
the most significant impact on the prediction performance, 
contributing a 26% improvement, followed by the inclusion 
of expert features alongside machine-derived features, 
which added a 3% improvement. The study also presents 
heatmaps that demonstrate substantial cost savings when 
targeted interventions are provided to high-risk patients. 
These findings emphasise the potential of the proposed 
deep learning model in identifying patients at risk of 
readmission, allowing healthcare providers to allocate 
appropriate resources and interventions, thereby improving 
patient outcomes and reducing healthcare costs. The 
researchers in Ali et al.9 developed a model that achieved 
a high level of success in predicting Stage 2/3 acute kidney 
injury (AKI) before its detection using conventional criteria, 
with a median lead time of 30 hours and an area under the 
receiver operating characteristic (AUROC) curve of 0.89. It 
accurately predicted 70% of subsequent renal replacement 
therapy (RRT) episodes, 58% of Stage 2/3 AKI episodes, and 
41% of any AKI episodes. The ratio of false alerts to true 
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alerts for any AKI episodes was approximately one-to-one, 
indicating a positive predictive value (PPV) of 47%. Notably, 
among the patients identified as at risk by the model, 79% 
received potentially nephrotoxic medication after being 
flagged by the model but before the development of AKI. 
These results demonstrate the effectiveness of the model 
in early detection of AKI and its potential to guide timely 
interventions and prevent further complications.  

Design and Methodologies
The AI-Powered Disease Diagnostic System is built upon 
a robust and modular software design. The system’s 
architecture integrates multiple layers—from the user 
interface to the deep learning model and feedback 
management system—each playing a crucial role in 
disease prediction. In this section, we describe the software 
design, outline the primary algorithms used, and present 
representative code snippets that exemplify the system’s 
functionality.

Architecture 

The system is divided into several interrelated modules. 
The Frontend Web Interface module, which is developed 
using Streamlit, is responsible for gathering user input and 
presenting predictions. It also provides a mechanism for 
feedback.  The backend REST API module is implemented 
with Flask. The backend acts as a mediator between the 
frontend and the machine learning model. It processes 
requests, performs data transformations, and handles 
predictions.  The deep learning model, which is the core of 
the system, is a neural network built with TensorFlow/Keras. 
This model predicts diseases based on input symptoms.  
In the Feedback and Database Layer, user feedback is 
recorded in a cloud-based database (MongoDB Atlas), 
which provides data for future model retraining.   In the 
Data Preprocessing Pipeline, text input of symptoms is 
transformed into numerical feature vectors using TF-IDF 
vectorisation. This transformation is critical for effective 
model training and inference.  

Dataset
The dataset is sourced from Kaggle, an online platform that 
hosts data science competitions and features an extensive 
repository of publicly available datasets. These datasets 
serve as a critical resource for researchers and practitioners, 
enabling them to train, test, and benchmark machine 
learning models.10 The dataset for this research contains 
5000 rows with a match of diseases and symptoms. Overall, 
the dataset contains 41 unique diseases. There are up to 
17 symptom features with respect to diseases.

Preprocessing
The following steps were performed for data preprocessing: 

•	 Standardisation: This step allows ensuring the String 
data type, stripping extra spaces, and lowercasing the 
values. The blank spaces between the symptoms were 
replaced by the underscore. For instance, symptoms like 
“Chest Pain” and “High fever” contain extra spaces and 
have inconsistent formatting. These were converted 
into “chest_pain” and “high_fever”.

•	 Handling Missing Values: Drop the rows that contain 
missing values more than the threshold (90%). After 
dropping the rows, the dataset still has missing values. 
To resolve this, the missing values were replaced with 
the symptom -- “no_symptom”.

•	 Correcting Form: Initially, multiple columns contain 
individual symptoms with respect to a disease. We 
merged all the columns of symptoms to form a list 
with respect to a disease.

•	 List Transformation: After converting symptoms to a 
list, we removed the symptoms that were named as 
“no_symptom”.

At the end, the dataset only has two columns: the first 
contains diseases, and the second contains a list of 
symptoms.

Label Encoding and TF-IDF Vectorisation (Term 
Frequency-Inverse Document Frequency)

The disease columns are converted into numeric values using 
label encoding, which converts categorical variables into 
numerical formats by assigning unique numeric values to 
them [11]. The column with the symptoms list is converted 
into a numerical format using TF-IDF vectorisation, as 
shown in Eq. (3) [12]. 1. Term Frequency (TF): Measures 
how frequently a term appears in a document.

                                                                                            Eq.(1)

                                                                                                                                   

Inverse Document Frequency (IDF): Measure how important 
a rare term is across all documents.

                                                                                           Eq. (2)

                                                                                             Eq. (3)

Where, fd(t) = frequency of term t in document d

              D = corpus of documents

Neural Network
The proposed system employs a deep learning-based 
multiclass classification model as shown in Figure 1, 
designed to predict diseases based on user-provided 
symptom descriptions. The implementation integrates data 
preprocessing, feature extraction, and a neural network 
model built using TensorFlow and Keras.
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Since the symptoms are in text format, they must be 
converted into numerical representations before being fed 
to the neural network. This is achieved using TF-IDF (Term 
Frequency–Inverse Document Frequency) vectorisation, 
which converts the text into weighted numerical feature 
vectors that capture the importance of each term within 
the dataset. Only the top 500 most informative features are 
retained to enhance computational efficiency and reduce 
model complexity. The transformed TF-IDF matrices are 
then converted into DataFrames for compatibility with 
TensorFlow.

And also, the target variable (disease) is categorical, and it 
is encoded into numerical form using LabelEncoder. This 
step allows the model to interpret disease categories as 
integer classes.

A compact feed-forward neural network (multilayer 
perceptron) is used for classification. The model has been 
optimised for faster training and reduced overfitting, which 
has an input layer that receives the 500-dimensional TF-
IDF feature vectors, hidden layers that have two fully 
connected layers with ReLU activation to introduce non-
linearity [14], and the output layer that contains a SoftMax 
layer with 41 neurones (equal to the number of distinct 
diseases) to produce class probabilities. The model is 
compiled using Adam Optimiser for efficient gradient-
based optimisation. The loss function is computed using 
the SparseCategoricalCrossentropy as shown in Eq. (4), 
suitable for integer-encoded multiclass targets.15

If there are c classes, the predicted probabilities are y^ = 
[p0, p1,…..pc-1], then:                                           

 

                                                                                            Eq. (4)                                                                                                 

Where, pn= Predicted probability of the correct class.

Figure 1.Architecture of Neural Network as indicated by13

Model Evaluation
This model is evaluated on the unseen test set to measure 
its generalisation ability using the accuracy score, which 
measures the ratio of correct predictions to total predictions 
made. The obtained accuracy of the score indicates 
the model’s ability to correctly classify diseases based 
on symptom inputs. Figures 2 and 3 show the code snippet 
of the training and testing of the disease diagnostic system:

Figure 2.This shows the making of neural network 
using the TensorFlow/Keras library of python16

Figure 3.This shows the training of neural network on 
10 epochs, and final accuracy score of the model on 

the test dataset
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Backend and Frontend
Availed “Streamlit” services to provide a user-friendly 
interface for users. Streamlit provides a textbox for the 
user to input symptoms, send an HTTP POST request to the 
/predict endpoint of the backend API, receive a response 
from the backend in JSON, and display the result (as shown 
in figure 4). In addition, it comes up with a textbox for user 
feedback if the output seems to be incorrect (as shown in 
figure 5). “Render” was used to deploy the model’s backend, 
which performs core functionality.17 We have used the 
Flask library to design the backend. The backend receives 
requests from the frontend, preprocesses symptoms, and 
invokes the model for prediction. Then it sends a prediction 
to the frontend and stores the user query and feedback 
in the MongoDB database (as shown in figure 7). Lastly, 
MongoDB Atlas stores user queries and user feedback for 
fine-tuning and rare disease learning. 

Figure 4.This shows the web interface where user 
enter the symptoms and gets the predicted disease as 

output

Figure 5.If the user has a doubt that the disease 
predicted by the model is not correct, the user can 

give the feedback as shown in this figure

Figure 6.This illustrate that the system has 
successfully submitted the feedback into the 

MongoDB database

Figure 7.User feedback and User queries get stored 
in MongoDB Atlas in a JSON format. After validation 

of the dataset that is stored in the cloud database, 
the original dataset can be augmented with this 

dataset. Then the model can be retrained on entire 
dataset which would help the model to improve 

generalization and accuracy, and also learn new and 
rare symptoms-disease mappings

Future Work
A promising direction for future work is the integration 
of reinforcement learning (RL) to enable automated 
retraining of the model based on user feedback. The 
current feedback mechanism captures corrections that 
can be reviewed manually; however, an RL framework 
would allow the model to adjust its weights dynamically, 
thereby continuously learning from its mistakes and 
improving accuracy. Future research could investigate 
optimal strategies for integrating reinforcement signals 
with supervised learning, ensuring stable and consistent 
performance improvements. Advanced Natural Language 
Processing (NLP)19: To address the limitations in handling 
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ambiguous or incomplete inputs, future iterations of the 
model should incorporate more advanced NLP techniques. 
Enhancing the preprocessing pipeline with state-of-the-
art NLP models—such as transformers or BERT-based 
encoders20—could improve the extraction of relevant 
features from free-form text. This enhancement would 
better handle nuances in symptom descriptions, leading 
to more accurate and robust predictions. The current 
system is designed solely for disease prediction, but its 
potential can be expanded significantly by integrating 
diagnostic recommendations with precautionary advice. 
Future work should focus on developing a module that not 
only identifies likely diseases but also provides practical 
recommendations on preventative measures and lifestyle 
adjustments. This might include guidelines such as when to 
seek immediate medical attention, suggestions for home 
care, or alerts about potential complications based on the 
disease diagnosed. Continued expansion and diversification 
of the dataset will be key to addressing the challenge of 
performance on unseen data. Incorporating more varied 
datasets, including data from different demographics and 
geographies, could help the model to become better at 
generalisation. Additionally, leveraging data augmentation 
techniques and regularisation methods in the model 
training process may further reduce overfitting and improve 
robustness. While the current interface is designed for 
simplicity and ease of use, further refinements in the UI/
UX can enhance accessibility and user engagement. Future 
developments could involve creating a more dynamic 
interface that supports multilingual inputs, voice commands, 
and more interactive feedback mechanisms. Additionally, 
incorporating detailed visualisations of the prediction 
process and confidence levels can help build user trust 
and understanding.

Discussion and Conclusion
The development of the AI-powered self-learning medical 
assistant represents a significant stride in applying artificial 
intelligence to healthcare diagnostics. This section reflects 
on the journey of this research by summarising key findings 
and achievements and then discussing the inherent 
limitations while outlining opportunities for further research 
and development. High prediction accuracy and efficiency 
are two of the most impressive outcomes of this research. 
The high prediction accuracy achieved by the deep learning 
model is particularly impressive. The system is trained on 
a dataset containing 5,000 records of symptom-disease 
mappings covering 41 distinct diseases, and the model 
reached approximately 96.54% accuracy on the test set. 
This result has a clear meaning: that the neural network, 
even with a relatively compact architecture, can capture 
meaningful patterns and correlations between the symptoms 
and diseases. In addition to accuracy, efficiency was a major 
design goal. Initially, when the model was deployed using the 

full TensorFlow/Keras format, it encountered performance 
issues on Render due to the limited 512 MB RAM provided 
by the hosting environment. Converting the model into 
the TensorFlow Lite format proved transformative. With 
optimisations such as float16 quantisation, the model not 
only fit within the memory constraints but also showed 
significant improvements in inference speed. The research 
benefits greatly from a modular software architecture. 
Each component, from the Streamlit-based frontend to 
the Flask backend deployed on Render, and from the data 
preprocessing pipeline to the deep learning inference 
engine, integrates seamlessly. This integration ensures 
that user input flows efficiently from the web interface, 
through the REST API, to the prediction model, and back to 
the user in real time.  The real-time feedback mechanism 
is another notable achievement. Users can confirm or 
correct the model’s prediction immediately after obtaining 
a result. This feedback is stored in MongoDB Atlas and lays 
the foundation for future automated retraining strategies. 
Although the current version of the system does not 
perform automatic model updates, the design anticipates 
future integration of reinforcement learning techniques to 
harness this user feedback dynamically. A crucial goal of 
this research was to build an accessible and cost-effective 
diagnostic tool. The use of Render for backend deployment 
has enabled the research to benefit from cloud scalability 
without incurring high costs. Render’s environment, though 
resource-constrained (512 MB RAM), proved sufficient once 
the model was converted to TensorFlow Lite. Moreover, 
leveraging free-tier services such as MongoDB Atlas and the 
open-source frameworks (TensorFlow, Flask, and Streamlit) 
has resulted in a solution that remains both low-cost and 
scalable. This makes the research particularly attractive 
for adoption in under-resourced settings where traditional 
diagnostic infrastructure might be limited. Despite the 
impressive performance on the training and test sets, 
the model shows some limitations when facing unseen 
data. In scenarios where the input symptom text differs 
substantially from the training examples, the model’s 
prediction accuracy drops. This clearly suggests that the 
model may require further tuning and a more diverse set 
of training samples to generalise effectively in real-world 
applications. Another problem is with handling ambiguous 
or incomplete inputs. The current system expects symptom 
inputs to be provided in a straightforward, whitespace-
separated format. However, in a practical case, users may 
enter ambiguous, incomplete, or even conflicting symptom 
information. Such cases can confuse the model, leading 
to incorrect predictions. In future versions, enhancing the 
preprocessing pipeline and integrating advanced natural 
language processing (NLP) techniques will help the model 
to better interpret and standardise more complex or 
unstructured inputs. Another challenge the system faces 
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is memory and computational constraints. The current 512 
MB RAM constraint might limit the future enhancements 
or the integration of more complex models.  
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