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ABSTRACT

The digital transformation of healthcare has seen an increasing reliance
on Artificial Intelligence (Al) and Machine Learning (ML) technologies
to support diagnostic and decision-making processes. In a world where
access to healthcare services remains uneven—especially in remote or
economically underdeveloped regions—technology is being leveraged
to fill the accessibility gap. The rise of intelligent applications has
not only enhanced the accuracy of diagnostics but has also enabled
faster, scalable, and cost-effective solutions. This research introduces
a lightweight neural network web application that identifies patterns
within symptoms to suggest a probable disease. With a main focus
on accessibility, affordability, and adaptability, the core of this system
is a deep learning model trained on a dataset consisting of 5,000
symptom-disease mappings covering 41 unique diseases. The model
with regularisation has achieved an outstanding 96.54% accuracy.
The neural network with users, whether healthcare professionals or
general individuals, can interact with the application to input symptoms
and receive a disease prediction within seconds. This serves as an
initial assessment tool, prompting users to seek professional advice if
necessary. The system is designed to be lightweight using TensorFlow
Lite, making it deployable even on low-end devices. It is hosted online
to ensure ease of access and is free of cost, promoting inclusivity. The
incorporation of a feedback mechanism—where users can correct
wrong predictions—adds another layer of intelligence by laying the
groundwork for reinforcement-based learning in future versions.

Keywords: Healthcare, Accessible, Light-weighted, Neural Network,
Al

Introduction

professionals in rural or remote areas further exacerbates
the problem. In this context, Al-based diagnostic assistants

Modern healthcare systems are often challenged by the
growing demand for accessible and timely medical care.
In countries with large populations or limited medical
infrastructure, patients may face long waiting times for
consultations or misdiagnosis due to overloaded healthcare
providers. Additionally, the lack of access to medical

offer an innovative solution. However, many existing
tools are either commercially restricted, too complex for
laypeople to use, or lack adaptability. This research seeks to
address these shortcomings through the development of an
Al-driven medical assistant that accurately predicts diseases
based on symptoms, freely accessible, lightweighted and
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fast, feedback-enabled, and scalable. The problem this
research tackles can be summarized by the following core
questions:

e Can Al be used to make accurate predictions about
diseases based solely on symptom input?

e Can such a system be made accessible and intuitive
enough for public use?

e Canfeedback from users be used to improve and adapt
the model over time?

Neural Networks

A neural network is a machine learning system designed
to mimic the organisation of the human brain. It consists
of interconnected layers of nodes known as neurones.
The input layer receives raw data, and the output layer
produces the final output. Computation occurs in the
hidden layers, which transform the input into the output.?
A neural network’s identification of patterns in data by
adjusting the weights of connections between neurones
is the most important objective of using it. During training,
the network receives a set of labelled samples and updates
its weights based on the differences between predicted
and actual output. After training, the network can be used
to make predictions or decisions using new input data.?

Neural networks have a number of applications in various
domains, such as robotics, natural language processing,
speech recognition, image recognition, and many more.
They have an excellent performance in tasks involving
complex and multidimensional data, such as visual or
auditory information. It is challenging and impossible
for traditional machine learning approaches to extract
the features in data that a neural network can extract
by recognising patterns in data. Common types of
neural networks include feedforward neural networks,
convolutional neural networks (CNNs), and recurrent neural
networks (RNNs).? Feedforward networks are among the
simplest types and are often used for classification tasks.
RNNs, on the other hand, are well-suited for natural
language processing tasks involving sequential input, such
as text or speech. Moreover, CNNs are employed for tasks
related to image recognition and classification.*

Flask

Flask is a lightweight and flexible web framework written
in Python for facilitating the rapid development of web
applications. It follows the micro-framework philosophy,
meaning it provides essential tools for building web
applications while leaving developers free to choose
additional extensions as needed. Its simplicity, combined
with extensive community support and a wide ecosystem
of extensions, has made Flask a popular choice among
developers for creating APIs and full-stack applications

(Grinberg, 2018).° This research leverages Flask to build
the backend of the Disease Diagnostic System.

Streamlit

Streamlit is an open-source Python library that enables
developers and researchers to create interactive and
data-driven web applications with minimal effort. Unlike
traditional web frameworks, Streamlit is designed
specifically for data science and machine learning workflows,
allowing users to turn Python scripts into shareable web
apps with just a few lines of code. Its simple syntax, widget
integration, and real-time data visualisation make it a
valuable tool for rapid prototyping and presenting analytical
results. Streamlit emphasises ease of use and integration
with popular Python libraries like NumPy, Pandas, and
TensorFlow (Streamlit Inc., 2022).¢

Related Work

Predicting diseases using neural networks in the healthcare
field has been a subject of extensive research. A number of
studies have explored the application of neural networks
in disease prediction, demonstrating promising results.
According to Ashfaq et al.’, a convolutional neural network
(CNN) was employed to predict the development of
diabetic retinopathy. The model achieved high accuracy
in diagnosing the disease based on retinal images. Another
study done by Dong et al.® focuses on the importance of
targeted interventions for high-risk patients to reduce
hospital readmissions and healthcare costs. The researchers
propose a deep learning framework that combines both
human and machine-derived features in a sequential
manner using a cost-sensitive LSTM model to predict the
risk of readmission, achieving an area under the curve (AUC)
of 0.77. The incorporation of sequential trajectories had
the most significant impact on the prediction performance,
contributing a 26% improvement, followed by the inclusion
of expert features alongside machine-derived features,
which added a 3% improvement. The study also presents
heatmaps that demonstrate substantial cost savings when
targeted interventions are provided to high-risk patients.
These findings emphasise the potential of the proposed
deep learning model in identifying patients at risk of
readmission, allowing healthcare providers to allocate
appropriate resources and interventions, thereby improving
patient outcomes and reducing healthcare costs. The
researchers in Ali et al.°developed a model that achieved
a high level of success in predicting Stage 2/3 acute kidney
injury (AKI) before its detection using conventional criteria,
with a median lead time of 30 hours and an area under the
receiver operating characteristic (AUROC) curve of 0.89. It
accurately predicted 70% of subsequent renal replacement
therapy (RRT) episodes, 58% of Stage 2/3 AKl episodes, and
41% of any AKI episodes. The ratio of false alerts to true
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alerts for any AKl episodes was approximately one-to-one,
indicating a positive predictive value (PPV) of 47%. Notably,
among the patients identified as at risk by the model, 79%
received potentially nephrotoxic medication after being
flagged by the model but before the development of AKI.
These results demonstrate the effectiveness of the model
in early detection of AKI and its potential to guide timely
interventions and prevent further complications.

Design and Methodologies

The Al-Powered Disease Diagnostic System is built upon
a robust and modular software design. The system’s
architecture integrates multiple layers—from the user
interface to the deep learning model and feedback
management system—each playing a crucial role in
disease prediction. In this section, we describe the software
design, outline the primary algorithms used, and present
representative code snippets that exemplify the system’s
functionality.

Architecture

The system is divided into several interrelated modules.
The Frontend Web Interface module, which is developed
using Streamlit, is responsible for gathering user input and
presenting predictions. It also provides a mechanism for
feedback. The backend REST API module is implemented
with Flask. The backend acts as a mediator between the
frontend and the machine learning model. It processes
requests, performs data transformations, and handles
predictions. The deep learning model, which is the core of
the system, is a neural network built with TensorFlow/Keras.
This model predicts diseases based on input symptoms.
In the Feedback and Database Layer, user feedback is
recorded in a cloud-based database (MongoDB Atlas),
which provides data for future model retraining. In the
Data Preprocessing Pipeline, text input of symptoms is
transformed into numerical feature vectors using TF-IDF
vectorisation. This transformation is critical for effective
model training and inference.

Dataset

The dataset is sourced from Kaggle, an online platform that
hosts data science competitions and features an extensive
repository of publicly available datasets. These datasets
serve as a critical resource for researchers and practitioners,
enabling them to train, test, and benchmark machine
learning models.'® The dataset for this research contains
5000 rows with a match of diseases and symptoms. Overall,
the dataset contains 41 unique diseases. There are up to
17 symptom features with respect to diseases.

Preprocessing

The following steps were performed for data preprocessing:
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e Standardisation: This step allows ensuring the String
data type, stripping extra spaces, and lowercasing the
values. The blank spaces between the symptoms were
replaced by the underscore. For instance, symptoms like
“Chest Pain” and “High fever” contain extra spaces and
have inconsistent formatting. These were converted
into “chest_pain” and “high_fever”.

e Handling Missing Values: Drop the rows that contain
missing values more than the threshold (90%). After
dropping the rows, the dataset still has missing values.
To resolve this, the missing values were replaced with
the symptom -- “no_symptom”.

e Correcting Form: Initially, multiple columns contain
individual symptoms with respect to a disease. We
merged all the columns of symptoms to form a list
with respect to a disease.

e List Transformation: After converting symptoms to a
list, we removed the symptoms that were named as
“no_symptom”.

At the end, the dataset only has two columns: the first
contains diseases, and the second contains a list of
symptoms.

Label Encoding and TF-IDF Vectorisation (Term
Frequency-Inverse Document Frequency)

The disease columns are converted into numeric values using
label encoding, which converts categorical variables into
numerical formats by assigning unique numeric values to
them [11]. The column with the symptoms list is converted
into a numerical format using TF-IDF vectorisation, as
shown in Eq. (3) [12]. 1. Term Frequency (TF): Measures
how frequently a term appears in a document.

Eq.(1
tf(t,d) = mk- .

wed Falv

Inverse Document Frequency (IDF): Measure how important
a rare term is across all documents.

idf (t,D) = 1n( Eq. (2)

||
|{deD : ted}l)
tfidf (t,d,D) = tf(t,d) . idf(t,D)

Where, f (t) = frequency of term t in document d

Eq. (3)

D = corpus of documents
Neural Network

The proposed system employs a deep learning-based
multiclass classification model as shown in Figure 1,
designed to predict diseases based on user-provided
symptom descriptions. The implementation integrates data
preprocessing, feature extraction, and a neural network
model built using TensorFlow and Keras.
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Figure |.Architecture of Neural Network as indicated by'?

Since the symptoms are in text format, they must be
converted into numerical representations before being fed
to the neural network. This is achieved using TF-IDF (Term
Frequency—Inverse Document Frequency) vectorisation,
which converts the text into weighted numerical feature
vectors that capture the importance of each term within
the dataset. Only the top 500 most informative features are
retained to enhance computational efficiency and reduce
model complexity. The transformed TF-IDF matrices are
then converted into DataFrames for compatibility with
TensorFlow.

And also, the target variable (disease) is categorical, and it
is encoded into numerical form using LabelEncoder. This
step allows the model to interpret disease categories as
integer classes.

A compact feed-forward neural network (multilayer
perceptron) is used for classification. The model has been
optimised for faster training and reduced overfitting, which
has an input layer that receives the 500-dimensional TF-
IDF feature vectors, hidden layers that have two fully
connected layers with ReLU activation to introduce non-
linearity [14], and the output layer that contains a SoftMax
layer with 41 neurones (equal to the number of distinct
diseases) to produce class probabilities. The model is
compiled using Adam Optimiser for efficient gradient-
based optimisation. The loss function is computed using
the SparseCategoricalCrossentropy as shown in Eq. (4),
suitable for integer-encoded multiclass targets.?

If there are c classes, the predicted probabilities are y" =
[Py PyeenP,,], then:

Loss = —log(pn) Eq. (4)

Where, p = Predicted probability of the correct class.

Model Evaluation

This model is evaluated on the unseen test set to measure
its generalisation ability using the accuracy score, which
measures the ratio of correct predictions to total predictions
made. The obtained accuracy of the score indicates
the model’s ability to correctly classify diseases based
on symptom inputs. Figures 2 and 3 show the code snippet
of the training and testing of the disease diagnostic system:

model = Sequential(
Dense(128, activation='relu’,
Dense(64, activation='relu’),
Dense 41, activation='softmax'|])

input_shape=(X_train.

model. (
optimizer='adan
loss=tf.keras. py(from_logits=False),

metrics=|'accuracy

)

model.

(X_train, y_train, validation_data=(X_test, y_test), epochs=18, batch_size=0008

test_loss, test_acc = model. ite(X_test, y_test)
( } A test_acc:.4f}")

Figure 2.This shows the making of neural network
using the TensorFlow/Keras library of python'®

83 1d4ms/step - accuracy: 8.1726 - loss: 3.6418 - va) cy: ©.43@9 - v Stop session 59
Epoch 3/10

5/5 0s ldms/step y: 0.4608
05

Epoch 4/18

0.5996

8s ldms/step - : 0.6217 - 0.7063
41

Epoch 5/18

5/5 8s ldms/step y: 8.7179

03

Epoch 6/10

5/5 0s lams/step -
48

Epoch 7/18

0.7703

accuracy: .7802 - loss: 3.3025 - val_accuracy: 0.8171 -

5/5 s lims/step
05

Epoch 8/18

5/5 85 ldms/step - accura
92

Epach 9/10

accuracy: 8.8242 8 - val_accuracy: 0.8811 - val_loss: 3.05

y: 9.9820 - loss: 3.8083 - val_accuracy: 0.9217 - val_loss: 2.86

8s ldms/step - accuracy: 8.9376 0.9593 - va
Epoch 18/18

5/5 ©s 15ms/step - accuracy: 8.9598 - loss: 2.
00

31/31 ©s 2ms/step - accuracy: ©.9669
Optimized Model Accuracy: 8.9654

60 - val_accuracy: ©.9654 -

Figure 3.This shows the training of neural network on
10 epochs, and final accuracy score of the model on
the test dataset
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Backend and Frontend

Availed “Streamlit” services to provide a user-friendly
interface for users. Streamlit provides a textbox for the
user to input symptoms, send an HTTP POST request to the
/predict endpoint of the backend API, receive a response
from the backend in JSON, and display the result (as shown
in figure 4). In addition, it comes up with a textbox for user
feedback if the output seems to be incorrect (as shown in
figure 5). “Render” was used to deploy the model’s backend,
which performs core functionality.’” We have used the
Flask library to design the backend. The backend receives
requests from the frontend, preprocesses symptoms, and
invokes the model for prediction. Then it sends a prediction
to the frontend and stores the user query and feedback
in the MongoDB database (as shown in figure 7). Lastly,
MongoDB Atlas stores user queries and user feedback for
fine-tuning and rare disease learning.

'» Al-Powered Self-Learning
Medical Assistant

Enter your symptoms to get a prediction

Is the prediction correct?

[ N 5 M maPERT e s E - g ™ -
Figure 4.This shows the web interface where user
enter the symptoms and gets the predicted disease as
output

Is the prediction correct?

B8 9 sewch

omoma@enT P00 A n G
Figure 5.If the user has a doubt that the disease

predicted by the model is not correct, the user can
give the feedback as shown in this figure
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Is the prediction correct?

s MmomBa@s 0T P09 aE
Figure 6.This illustrate that the system has

successfully submitted the feedback into the
MongoDB database

sldds.user_feedback

o momAa@e®RT P02 a ]

Figure 7.User feedback and User queries get stored

in MongoDB Atlas in a JSON format. After validation

of the dataset that is stored in the cloud database,

the original dataset can be augmented with this

dataset. Then the model can be retrained on entire
dataset which would help the model to improve

generalization and accuracy, and also learn new and

rare symptoms-disease mappings

Future Work

A promising direction for future work is the integration
of reinforcement learning (RL) to enable automated
retraining of the model based on user feedback. The
current feedback mechanism captures corrections that
can be reviewed manually; however, an RL framework
would allow the model to adjust its weights dynamically,
thereby continuously learning from its mistakes and
improving accuracy. Future research could investigate
optimal strategies for integrating reinforcement signals
with supervised learning, ensuring stable and consistent
performance improvements. Advanced Natural Language
Processing (NLP)*°: To address the limitations in handling
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ambiguous or incomplete inputs, future iterations of the
model should incorporate more advanced NLP techniques.
Enhancing the preprocessing pipeline with state-of-the-
art NLP models—such as transformers or BERT-based
encoders®®*—could improve the extraction of relevant
features from free-form text. This enhancement would
better handle nuances in symptom descriptions, leading
to more accurate and robust predictions. The current
system is designed solely for disease prediction, but its
potential can be expanded significantly by integrating
diagnostic recommendations with precautionary advice.
Future work should focus on developing a module that not
only identifies likely diseases but also provides practical
recommendations on preventative measures and lifestyle
adjustments. This might include guidelines such as when to
seek immediate medical attention, suggestions for home
care, or alerts about potential complications based on the
disease diagnosed. Continued expansion and diversification
of the dataset will be key to addressing the challenge of
performance on unseen data. Incorporating more varied
datasets, including data from different demographics and
geographies, could help the model to become better at
generalisation. Additionally, leveraging data augmentation
techniques and regularisation methods in the model
training process may further reduce overfitting and improve
robustness. While the current interface is designed for
simplicity and ease of use, further refinements in the Ul/
UX can enhance accessibility and user engagement. Future
developments could involve creating a more dynamic
interface that supports multilingual inputs, voice commands,
and more interactive feedback mechanisms. Additionally,
incorporating detailed visualisations of the prediction
process and confidence levels can help build user trust
and understanding.

Discussion and Conclusion

The development of the Al-powered self-learning medical
assistant represents a significant stride in applying artificial
intelligence to healthcare diagnostics. This section reflects
on the journey of this research by summarising key findings
and achievements and then discussing the inherent
limitations while outlining opportunities for further research
and development. High prediction accuracy and efficiency
are two of the most impressive outcomes of this research.
The high prediction accuracy achieved by the deep learning
model is particularly impressive. The system is trained on
a dataset containing 5,000 records of symptom-disease
mappings covering 41 distinct diseases, and the model
reached approximately 96.54% accuracy on the test set.
This result has a clear meaning: that the neural network,
even with a relatively compact architecture, can capture
meaningful patterns and correlations between the symptoms
and diseases. In addition to accuracy, efficiency was a major
design goal. Initially, when the model was deployed using the

full TensorFlow/Keras format, it encountered performance
issues on Render due to the limited 512 MB RAM provided
by the hosting environment. Converting the model into
the TensorFlow Lite format proved transformative. With
optimisations such as float16 quantisation, the model not
only fit within the memory constraints but also showed
significant improvements in inference speed. The research
benefits greatly from a modular software architecture.
Each component, from the Streamlit-based frontend to
the Flask backend deployed on Render, and from the data
preprocessing pipeline to the deep learning inference
engine, integrates seamlessly. This integration ensures
that user input flows efficiently from the web interface,
through the REST API, to the prediction model, and back to
the user in real time. The real-time feedback mechanism
is another notable achievement. Users can confirm or
correct the model’s prediction immediately after obtaining
aresult. This feedback is stored in MongoDB Atlas and lays
the foundation for future automated retraining strategies.
Although the current version of the system does not
perform automatic model updates, the design anticipates
future integration of reinforcement learning techniques to
harness this user feedback dynamically. A crucial goal of
this research was to build an accessible and cost-effective
diagnostic tool. The use of Render for backend deployment
has enabled the research to benefit from cloud scalability
without incurring high costs. Render’s environment, though
resource-constrained (512 MB RAM), proved sufficient once
the model was converted to TensorFlow Lite. Moreover,
leveraging free-tier services such as MongoDB Atlas and the
open-source frameworks (TensorFlow, Flask, and Streamlit)
has resulted in a solution that remains both low-cost and
scalable. This makes the research particularly attractive
for adoption in under-resourced settings where traditional
diagnostic infrastructure might be limited. Despite the
impressive performance on the training and test sets,
the model shows some limitations when facing unseen
data. In scenarios where the input symptom text differs
substantially from the training examples, the model’s
prediction accuracy drops. This clearly suggests that the
model may require further tuning and a more diverse set
of training samples to generalise effectively in real-world
applications. Another problem is with handling ambiguous
or incomplete inputs. The current system expects symptom
inputs to be provided in a straightforward, whitespace-
separated format. However, in a practical case, users may
enter ambiguous, incomplete, or even conflicting symptom
information. Such cases can confuse the model, leading
to incorrect predictions. In future versions, enhancing the
preprocessing pipeline and integrating advanced natural
language processing (NLP) techniques will help the model
to better interpret and standardise more complex or
unstructured inputs. Another challenge the system faces
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is memory and computational constraints. The current 512
MB RAM constraint might limit the future enhancements
or the integration of more complex models.
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