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ABSTRACT

Important global climate anomalies, such as the El Nifio-Southern
Oscillation (ENSO), can impact socio-economic systems, water resources,
and agriculture. Strategies for disaster preparedness and climate
adaptation rely on accurate ENSO event predictions. Here, we use
machine learning techniques to investigate potential causes of ENSO
prediction. The ENSO indices (Nifio 3.4 and Nifio 4) were modelled using
historical records of sea surface temperature (SST), sea level pressure
(SLP), and subsurface ocean temperatures. To unravel the data’s
patterns, including its non-linear linkages and temporal dependencies,
we employed Random Forest (RF), Gradient Boosting (GB), and Long
Short-Term Memory (LSTM) networks. To evaluate model performance,
we used RMSE, MAE, and correlation coefficients for performance
metrics, as well as feature importance metrics and seasonal analysis to
evaluate phase-dependent predictability (i.e., modelling winter ENSO
and summer ENSO). The results indicate that the LSTM model yields
performance levels superior to the tree-based models and predicts the
highest levels of ENSO prediction accuracy; the strongest predictors
were SST anomalies in the Nifio 3.4 region and subsurface temperatures.
In terms of seasonal predictability, we found that ENSO events during
winter months were more predictable than summer months, which
aligns with phase-locking behaviour. Overall, this research shows that
machine learning can provide reliable understanding of ENSO dynamics
and identify the important climate drivers, which together provides a
step towards better forecasting and early warning capacity.

KeYWOI’dS: Enso, El Niflo—Southern Oscillation, Machine Learning,
Lstm, Random Forest, Gradient Boosting, Sea Surface Temperature,
Sea Level Pressure

Introduction

events, which encompass both warm (El Nifio) and cold
(La Nifia) phases.? Predicting ENSO events appropriately

Sea surface temperatures (SST) and air pressure in the
equatorial Pacific undergo periodic change as part of the
El Nifio-Southern Oscillation (ENSO), a significant climate
phenomenon.! Changes to precipitation, temperature
extremes, agriculture, water resources, and socio-economic
systems are among the significant effects of ENSO-driven

is important to prepare for disasters, inform agricultural
practices, and adapt to climate change.?

While conventional forecasting strategies such as statistical
models and dynamical models have shortcomings in
considering coupled and non-linear ocean-atmosphere
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processes that underpin ENSO variability?, recent
developments in machine learning (ML) hold promise to
inform us about the next generation of ML tools that allow
us to analyse very large climate datasets °, discover latent
patterns, and compare accuracy improvements to historical
approaches®. Patterns in historical ocean and atmospheric
data may be used to identify dominant predictors and
metrics based on their weight on predictability, leading to
new insights that could potentially outperform conventional
predictions.”

Objectives of the Study

¢ To model ENSO indices using advanced machine
learning techniques and evaluate their predictive skill.

e To identify and quantify the dominant oceanic
and atmospheric variables contributing to ENSO
predictability.

e Toassess seasonal variations in ENSO predictability and
understand phase-dependent forecasting accuracy.

Literature Review

Colfescu et al. (2024)8 analysed oceanic characteristics (SST,
heat content) and atmospheric variables (near-surface
zonal wind, U10) to determine the long-term predictability
of ENSO using machine learning. During the late fall to late
spring, they discovered that tropical SST was the most
influential factor on predicting skill; however, U10 on its
own showed similar forecasting ability for lead durations
of 11-21 months. An atmospheric bridge in the Pacific
explains the long-lead signal as a result of linked wind-
SST interactions over the Indian Ocean. A preliminary
link between anomalies in the western Indian Ocean’s
sea surface temperature and anomalies in the eastern
Indian Ocean’s wind speed has been suggested via linear
correlation studies. The study emphasised the significance
of U10 for ENSO predictions beyond one year.

Dijkstra et al. (2019)° assessed progress toward forecasting
El Nifio events in the tropical Pacific, focusing on machine
learning techniques derived from artificial neural networks.
It was indicated that typical statistical and dynamical models
experienced substantial skill loss when forecasting for lead
times greater than six months. In contrast, initial machine
learning approaches showed superior forecasting skill for
lead times longer than 12 months. In addition, the article
discussed ways to select the most effective forecasting
characteristics, particularly for attributes derived from
complex networks, and offered a critical viewpoint regarding
potential future directions to improve ENSO forecasting.

Lima et al. (2015)%° studied how well statistical and
dynamical models could predict ENSO, and they all failed
miserably when it came to making predictions more than six
months out. They unveiled a state-of-the-art ENSO forecast
model that was created at UNB/CWC using regularised least

squares regression and a nonlinear dimensionality reduction
technique. For longer lead times in particular, their model
outperformed other ENSO forecast models. Contrary to
numerous other models and in line with observations, the
UNB/CWC model did not anticipate a large El Nifio event
in 2014, according to an examination of that event. In
particular, with longer lead times, this work demonstrated
that nonlinear statistical approaches have the ability to
improve the accuracy of ENSO predictions.

Research Methodology

This study aims to identify the sources of ENSO predictability
using machine learning techniques.

Research Design

This study adopts a quantitative, analytical research
approach that utilises historical datasets on the ocean
and atmosphere to develop ENSO indices. This research
combines comparative modelling with feature attribution
and seasonal analysis to characterise both predictive skill
and dominant predictors.

Data Sources

This study uses reliable datasets from 1980 to 2023 detailing
key oceanic and atmospheric variables that influence
ENSO. Sea surface temperature (SST) data is from NOAA
OISST, while sea level pressure (SLP) is obtained from
ERAS reanalysis. Subsurface ocean temperatures at 50
m and 100 m depth come from Argo floats and ORASS5.
SST anomalies from Nifio 3.4 and Nifio 4 indices serve as
target variables. Together, these datasets are a complete
representation of the coupled ocean-atmosphere processes
that underlie ENSO.

Data Preprocessing

The climate datasets are initially prepared for compatibility
and robustness of machine learning analysis. For missing
values, we use the k-nearest neighbours (KNN) method,
which preserves local time correlations and local spatial
correlations. All variables are scaled to zero mean and
unit variance to avoid potential bias, and seasonal trends
are adjusted out to focus only on interannual variations
that contribute to ENSO. Finally, all datasets are aligned
on a monthly scale to temporally synchronise predictors
to ENSO indices.

Machine Learning Models

For Random Forest (RF), 200 estimators were used with
maximum depth determined through grid search. Gradient
Boosting (GB) employed a learning rate of 0.05 with
300 estimators and a subsample ratio of 0.8 to prevent
overfitting. The Long Short-Term Memory (LSTM) network
consisted of two hidden layers with 64 and 32 units, ReLU
activation for intermediate layers, and a linear output layer.
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Dropout regularisation (rate = 0.2) was applied to mitigate
overfitting. The model was trained for 100 epochs using
the Adam optimiser with a learning rate of 0.001 and a
batch size of 32.

e Random Forest (RF): Conducts non-linear regression
and evaluates feature importance.

e Gradient Boosting (GB): Captures complex interactions
and increases prediction accuracy.

¢ Long Short-Term Memory (LSTM): Represents sequen-
tial data with respect to time dependence.

The training process consisted of 80% of data used for
training and 20% for testing; hyperparameter tuning
was performed through grid search and cross validation.
Additionally, temporal cross-validation was implemented
using a sliding window approach. Models were trained
on earlier segments of the time series and validated on
subsequent periods to ensure realistic temporal forecasting
conditions and prevent data leakage across time.

Evaluation Metrics

Model performance is evaluated using RMSE and MAE to
quantify prediction errors and the correlation coefficient (R)
to assess the agreement between observed and predicted
ENSO indices. In the RF and GB models, feature importance
scores specify the contribution of each predictor to the
overall model. The models are also explored seasonally for
DJF, MAM, JJA, and SON, analysing associations between
phase-dependent behaviour and ENSO predictability.

Analytical Approach

Using a comparative modelling strategy, the study evaluates
the predictive skill of RF, GB, and LSTM models, including
the effects of temporal dependencies and nonlinearities in
predicting ENSO. The study uses feature importance metrics
to quantify the influences of the sea surface temperature
(SST), subsurface temperatures, sea level pressure (SLP),
and wind anomalies (as well as other variables) on the
ENSO indices. Seasonal performance is also investigated
to show seasons of generally higher or lower predictability,
providing information about phase locking and stochastic
variability. The approach allows robust quantification
of ENSO predictability while simultaneously identifying
relevant climate drivers.

Results And Discussion

The comparative performance shows the LSTM’s capability
to handle sequential dependencies and non-linearities
inherent in ENSO dynamics. The superior correlation
and reduced error metrics confirm that recurrent neural
architectures can learn temporal memory patterns more
effectively than tree-based methods. This is consistent with
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prior ENSO prediction studies that emphasise temporal
coherence as a critical predictor of skill.

This section presents how the performance of the machine
learning models predicts ENSO indices, explores the relative
influence of ocean and atmospheric predictor variables,
and examines seasonal variability with respect to predictive
skill to provide a holistic understanding of predictability
associated with ENSO.

Model Performance

Table 1 summarizes the outcomes of the three machine
learning models’ predicted performance on the Nifio 3.4
index.

The LSTM model produced the lowest values of RMSE
(0.59°C) and MAE (0.46°C) as well as the greatest correlation
(R =0.91), suggesting improved predictive skill over tree-
based models. Gradient boosting performed marginally
better than random forest, most likely because the model
was able to account for complex non-linear interactions
among predictors. These results underscore the value
of representing temporal dependencies with respect to
ENSO dynamics, as LSTM models are proposed to better
incorporate sequential data.

Feature Importance Analysis

To assess the strongest predictors of ENSO, feature
importance assesses from RF and GB models. Fig. 1 lists
the 10 most important predictors.

SST anomalies in the Nifio 3.4 area have been consistently
the most crucial predictor across both models, illustrating the
fundamental role of central Pacific Ocean temperatures in
driving ENSO events. Furthermore, subsurface temperatures
(at both 50 m and 100 m depths) were also deemed
essential predictors, indicating that heat content below
the surface has a strong impact on the evolution of ENSO.
In addition, significant contributions were also seen from
various atmospheric variables (specifically SLT and wind
anomalies), confirming the associated ocean-atmosphere
nature of processes involved in ENSO dynamics. Taken
together, oceanic and atmospheric predictors strongly
indicate that proper ENSO forecasts should include multiple
climate-related predictors rather than be limited to SSTs.

Table |.Model Performance Metrics For Enso

Prediction
Model RMSE (°C) | MAE (°C) R
(Correlation)
Random Forest 0.68 0.52 0.87
Gradient 0.62 0.49 0.89
Boosting
LSTM 0.59 0.46 0.91
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Figure |.Feature Importance Rankings

Limitation and Future Work

Although the models perform well, the study is limited by
the spatial resolution of datasets and potential errors in
reanalysis data. Future work may include hybrid models
that integrate physical constraints or use attention-based
architectures (e.g., Transformers) for better interpretability
and long-lead prediction. Additionally, incorporating ocean
reanalysis ensembles may improve robustness.

Temporal and Seasonal Analysis

The predictive skill of the LSTM model was evaluated for
seasonal variations representing phase-dependent ENSO
predictability. Table Il provides a summary of the RMSE
and correlation (R) for various seasons.

Table 2.Seasonal Predictive Skill Of Lstm Model

Season RMSE (°C) R (Correlation)
DJF (Winter) 0.57 0.92
MAM (Spring) 0.61 0.90
JJA (Summer) 0.62 0.88
SON (Autumn) 0.60 0.89

The most accurate predictions of ENSO events took place
in winter (DJF) (R = 0.92), whereas the predictions made
in summer (JJA) displayed the lowest predictability (R
= 0.88). This finding is consistent with the well-known
seasonal phenomenon of the phase-locking mechanism
in ENSO events, with ENSO typically peaking in boreal
winter, thus making prediction more certain. ENSO’s slightly
lower performance in the summer may be due to the
effects of stochastic processes at those ENSO transitional
phases, which likely reduce the model’s predictability.

These seasonal differences are important to consider for
operational forecasting and early warning applications.

Conclusion

ElNiflo-Southern Oscillation (ENSO) can be better understood
and predicted with the help of machine learning techniques,
as demonstrated in this study. Of the approaches tested,
the Long Short-Term Memory (LSTM) network showed
the best predicting ability, highlighting the importance of
capturing ENSO’s temporal features. Among the notable
factors that contribute to the predictability of ENSO,
according to the feature importance analysis, are sea surface
temperature anomalies in the Nifio 3.4 zone, subsurface
ocean temperature, and atmospheric variables such as sea
level pressure and wind anomalies. Seasonal evaluation
showed that ENSO events are the most predictable in
winter (DJF), consistent with established phase-locking
tendencies of ENSO; summer events resulted in lower
predictability due to transitional and stochastic, or noise,
processes. Overall, the results indicate that incorporating
oceanic and atmospheric variables into machine learning
frameworks improves predictive ability over traditional
ML-based techniques.
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