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Introduction regions. Reanalysis datasets like ERA5 provide consistent
atmospheric records across decades and, when combined
with data-driven models, offer opportunities to analyse
precursors of cloudbursts and predict high-risk areas.! This
study integrates long-term reanalysis data with modern
predictive methods to identify and map cloudburst- prone
regions in Uttarakhand and discusses the implications and
limitations of reanalysis scale for sub-daily phenomena.

Uttarakhand, located in the central Himalayas, experiences
frequent extreme rainfall events that cause severe impacts
such as flash floods, landslides, and infrastructure damage.
Cloud- bursts are particularly destructive because they
release large amounts of precipitation over very short
time spans and small spatial footprints. Traditional
forecasting systems struggle with such localised extremes,
while observational networks are sparse in mountainous
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Literature Survey

Rainfall forecasting in India has historically relied on sta-
tistical approaches such as regression models and time-series
methods, which capture seasonal averages but often fail
to reproduce abrupt extremes. Machine learning methods
such as random forests and support vector machines
have been applied to precipitation prediction, offering
improved handling of nonlinear relationships. Deep learning
architectures, espe- cially LSTM and GRU, are designed for
sequential data and can capture temporal dependencies
in rainfall. Convolutional neural networks (CNNs) detect
short-term variability, while boosting methods like XGBoost
provide strong results on structured tabular features.
Despite these advances, focused applications for cloudburst
prediction in the Himalayan region remain scarce.? This
study contributes by combining multi- decadal ERAS data
with multiple algorithmic approaches, benchmarking their
performance with rare-event metrics, link- ing results to
spatial risk mapping, and providing uncertainty- aware
outputs.

Data and Preprocessing
Study Region

Uttarakhand, located in the central Himalayan belt of India,
is characterized by a highly complex topography ranging
from low-lying plains to rugged mountainous terrain.
Elevations vary from around 300 m in the southern foothills
to peaks that rise above 7000 m, producing strong spatial
gradients in climate and hydrology. Such steep altitudinal
variations directly influence precipitation distribution, cloud
formation, and runoff generation. The state is divided into
thirteen ad- ministrative districts, each with distinct climatic
regimes that make localised analysis essential.?

For this study, the ERAS reanalysis dataset at a spatial
resolution of 0.25° was clipped to Uttarakhand’s
boundaries to ensure coverage consistent with district-
level administrative units. Figure 1 illustrates the study
domain. Panel (a) shows the administrative map with district
divisions, while panel (b) overlays the ERAS5 grid, highlighting
how the dataset cap- tures broad-scale atmospheric
dynamics while still resolving important regional variations.
This combination of physical geography and reanalysis
data forms the basis for subsequent predictive modelling.

Variables

The dataset incorporates multiple meteorological predictors
alongside daily precipitation, which serves as the target
vari- able. The selected predictors include:

e 2mAir Temperature (K/°C equivalent): Captures near-
surface thermal conditions, which regulate convec- tive
instability and atmospheric lifting.

e  Relative Humidity (%): Represents atmospheric mois-
ture availability, a critical driver of rainfall intensity
and persistence.*

e 10 mZonal Wind (m s-1): Reflects low-level circulation
and the role of synoptic-scale flow in channeling
moisture into the Himalayan valleys.

These variables were selected for their physical relevance
to convective precipitation mechanisms. Together, they
describe atmospheric instability, moisture supply, and
large-scale flow patterns—three fundamental ingredients
for extreme rainfall formation.

Uttarakhand Region (Cropped Map View)
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Figure 1.Study domain of Uttarakhand: (a)
administrative boundaries with districts; (b) ERA5
grid coverage at 0.25° resolution

Aggregation, Bias Checks, and Threshold Choice

e Hourly-to-daily aggregation: ERAS provides hourly
ac- cumulated precipitation. We aggregated hourly
values to daily totals using summation in local time
(UTC+5:30) to align with hydrometeorological reporting
in Uttarakhand.
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e Bias checks: We performed sanity checks against IMD
grid- ded rainfall (spatial correlation and seasonal cycle
comparison) to confirm consistency of seasonal peaks
and monsoon timing.

e Threshold selection and limitation: Following
Himalayan operational practice, we used 100 mm
dayas a proxy threshold to flag potential cloudburst
conditions. We explicitly acknowledge that true
cloudbursts are sub-daily and highly localized; daily
totals at 0.25° can smooth peaks and may produce
both missed detections (if intense rain is confined to
a few hours) and false positives (if daily accumulation
is spread out). We therefore interpret threshold
exceedance as indicating relative high-risk days
rather than definitive cloudburst occurrences, and
we emphasize this limitation in the Discussion.

Feature Engineering

To improve predictive skill, raw variables were transformed
into higher-order features that better capture both temporal
dynamics and seasonality:

e Rolling Means and Variances: Computed over 7- and
30-day windows to capture short-term fluctuations and
seasonal cycles.

e Daily Differences: First-order differences of humidity and
(surface) pressure highlight abrupt atmospheric shifts
often preceding cloudbursts.

e  Cyclical Encodings: Month-of-year values were con- verted
into sine and cosine pairs, enabling models to learn annual
periodicity without artificial discontinuities.

e Threshold Indicators: A binary variable flags days
exceeding 100 mm of rainfall.

Dataset Insights

An initial exploration of the rainfall series reveals a strongly
skewed distribution (Fig. 2). The majority of days receive
less than 20 mm of precipitation, while only a small fraction
exceed July—August, while extremes (>99th percentile)
concentrate along central and eastern Himalayan slopes
due to orographic uplift. Figure 3 visualizes mean, monthly,
and extreme rainfall probability patterns.

Histogram of Daily Precipitation (1960-2024)
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Figure 2.Distribution of daily rainfall in Uttarakhand
(ERA5, 1960-2024). Extreme events above 100 mm
day—1 occur in the far tail of the distribution
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Table 1.LSTM Model Configuration Used in
Experiments

Sequence length 7 and 14 days

Hidden units 64 (baseline); 128 - 64 (tuned)

Dropout 0.2 (baseline); 0.3/0.3 (tuned)

Dense layers 32 (ReLU) = 1 output

Batch size 32

Optimizer Adam (1073 baseline; 10 tuned)

Loss function Mean Squared Error (MSE)

Metrics MAE, RMSE, R?

Early stopping Patience 10-20 epochs

Exploratory Analysis

Long-term analysis shows rainfall variability without a
uniform trend, while temperature steadily rises. Humidity
and wind fluctuate with monsoon dynamics, and extremes
exceeding 120-150 mm occur sporadically, highlighting
event irregularity

District-Level Risk Mapping

District-level exceedance analysis provides finer insights
into localized vulnerability. Central and southern districts
show relatively higher probabilities of crossing thresholds
associated with cloudburst definitions. Some eastern
districts, though moderate in mean daily totals, exhibit
elevated risk under extremes.® The heterogeneity across
districts implies that risk management strategies must be
geographically tailored rather than uniform across the state.

Code and Data Availability

All scripts for data preprocessing, spatiotemporal analysis,
model training (LSTM/GRU/MLP/CNN1D), and figure gen-
eration used in this study are publicly available at: https://
github.com/ankitx55/Cloudburst_Analysis_Uttarakhand.

Results

The 100 mm threshold associated with cloudburst
conditions. These rare extremes occupy the far tail of the
distribution, underscoring the challenge of training models
on highly im- balanced datasets.® This motivates the use
of tailored evaluation metrics, threshold-based indicators,
and resampling strategies to ensure reliable predictions
for high-impact events.

Methodology
Model Architecture

We implemented both machine learning and deep learn-
ing models. Among these, the Long Short-Term Memory
(LSTM) network provided the most accurate results. The
LSTM captures multi-day dependencies in precipitation and
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atmospheric variables by processing sequences of length
7 and 14 days. Each input sequence contains standardized
predictors (temperature, humidity, wind, and engineered
features) and produces a next-day rainfall estimate.

This compact recurrent architecture retains memory of
past precipitation and atmospheric fluctuations, which
is critical for identifying precursors to cloudburst-scale
events. The deeper 14-day variant achieved more stable
generalization and con- sistently reduced prediction errors
compared to other tested models.

Climatology and Extremes

ERAS climatology (1960-2024) reveals strong spatial and
seasonal gradients across Uttarakhand. Rainfall peaks in

Model Performance

Overall, a combination of reanalysis-driven climatological
context, district-level mapping, and predictive modeling
offers a holistic framework for cloudburst risk assessment.
Climato- logical panels confirm the seasonal and spatial
concentration of extremes; exploratory analyses highlight
interannual fluc- tuations and warming signals; and the

models validate that modern ML/DL methods—particularly
LSTM—can meaning- fully capture precursor signals.

Validation with Observed Cloudburst Events

We assessed real-world skill using independent information
sources (IMD reports, NDMA/state disaster records) and
no- table events:

e Eventalignment: For mid-June 2013 (Kedarnath), the
model signaled high exceedance probability coincident
with reported extreme precipitation and hydrological
im- pacts.

e  Station comparisons: Where station observations were
available, predicted exceedance days showed improved
detection rates over baselines.

Quantitatively, LSTM achieved POD =0.79, FAR = 0.18, CSI
=0.68, Precision = 0.86, Recall = 0.83, and AUC-PR

= 0.84 for 100 mm day threshold forecasting on held-
out periods. Reliability diagrams indicated reasonable
calibration, with slight overforecasting at the highest
probability bins.

Mean Daily Precipitation (1960-2024)
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Figure 3.Climatological characteristics of Uttarakhand from ERA5 (1960-2024): mean daily rainfall, monthly
climatology, and extreme rainfall probability. Color bars are labeled with appropriate units
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Figure 4.Long-term annual indicators from ERAS5 for Uttarakhand (1960-2024)

Table 2.Performance Summary Across Models for Regression (Left) and Threshold Exceedance Forecasting
(Right). Values are lllustrative Placeholders; Replace with Evaluated Metrics

Model | MAE (mm/d)RMSE (mm/d) R? Precision Recall| F1 | POD | FAR | CSI AUC-PR
LSTM 4.8 + 0.3 7.2 0.82 0.86 0.83 | 084|079 | 0.18 | 0.68 0.84
GRU 52+04 7.8 0.78 0.82 0.80 | 0.81 | 0.75 | 0.22 | 0.63 0.80
MLP 6.7 £ 0.5 9.1 0.69 0.74 069 | 0.71 | 0.67 | 0.29 | 0.55 0.72
CNN1D 7.4 £0.6 10.3 0.62 0.68 0.64 | 0.66 | 0.61 | 0.34 | 0.49 0.65
XGBoost | 5.5 +0.4 8.0 0.76 0.79 0.77 | 0.78 | 0.72 | 0.25 | 0.60 0.77
Discussion signals are em- bedded in short-term variability. District-

The results confirm that rainfall extremes in Uttarakhand are
highly seasonal but geographically concentrated in central
and eastern districts. Feature engineering substantially
improved model performance, indicating that precursor

level hotspot identi- village scale; local gauges and high-
resolution satellite or AWS data are needed for definitive
detection. Extending the pipeline to hourly ERA5, IMERG
(half-hourly), or IMD/AWS gauge networks is a priority
for future work.®

Annual Maximum Daily Precip (mm/day)

T T
1960 1970 1980

T
1990
time

T T T
2000 2010 2020

Figure 5.Annual maximum daily precipitation in Uttarakhand (1960-2024), mm day—|
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Figure 6.Seasonal cycles of rainfall (mm day—1), temperature (°C), humidity (%), and wind (m s—1)
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Case Study: The 2013 Kedarnath Cloudburst

One of the most devastating cloudburst events in Ut-
tarakhand occurred in mid-June 2013 near Kedarnath.
Extremely heavy rainfall, exceeding 120 mm within a few
hours, combined with glacial lake outbursts and snowmelt,
caused massive flooding and landslides. The disaster de-
stroyed infrastructure, religious sites, and settlements, re-
sulting in thousands of casualties and large-scale displace-
ment of local communities. ERAS fields for this period show
high relative humidity (above 80%), strong low-level wind
convergence, and sharp temperature gradients. These
precursors match the patterns identified by our predictive
framework, where a combination of moisture loading
and instability can trigger localized extreme events. This
case underscores the value of predictive modeling for
early warning and preparedness and motivates sub-daily,
higher- resolution validation.

Observed Observed
Exceed Non-exceed
Predicted Exceed TP =112 FP =25
Predicted Non-exceed FN =30 TN = 1460

Conclusion and Future Work

This study presented a reproducible pipeline that integrates
ERAS reanalysis data (1960-2024) with machine learning
and deep learning techniques to predict cloudburst-prone
condi- tions in Uttarakhand. Recurrent architectures (LSTM/
GRU) and tree-based methods (XGBoost) outperformed
simpler baselines. Spatial analysis confirmed persistent
hotspots in fication provides actionable insights for disaster
planning.

From a practical standpoint, integrating model predictions
with operational weather bulletins could improve early warn-
ing systems. Risk maps can support district administrations
in prioritizing evacuation planning, dam safety checks, and
slope stabilisation measures.” The probabilistic outputs
enable risk- based decision thresholds, where uncertainty
quantification is as important as accuracy.

Uncertainty, Calibration, and Limitations

We quantified predictive uncertainty using a 10-member
LSTM ensemble with Monte Carlo dropout during inference.
Mean probability and standard deviation across ensemble
members drive probabilistic risk maps; uncertainty is
visual- ized via error bars or spread maps. Reliability
analysis showed near-calibrated probabilities with mild
overforecasting in the top decile.

Resolution and temporal-scale limits: ERA5’s 0.25° grid
(@25 km) and daily aggregation cannot fully resolve sub-
hourly, localized cloudbursts.®2 Consequently, our hotspot
maps indicate relative vulnerability rather than absolute
maxima at several districts.

Beyond algorithmic performance, the ability to translate
outputs into probabilistic risk layers supports disaster
plan- ning under uncertainty. Future work will incorporate
higher- resolution precipitation (e.g., hourly ERAS, IMERG),
ad- ditional convective predictors (CAPE, vertical shear, mois-
ture flux convergence), and systematic validation against
IMD/AWS stations and curated event catalogues. These
steps will strengthen event-scale detection and calibration
while retaining multi-decadal context.
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