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Introduction around 1,805 crores per year—though this value fluctuates
significantly depending on monsoon intensity and regional
factors.? National flood guidelines also report that more
recent decades show average annual damages as high
as 4,745 crores compared to older long-term averages of
1,805 crores.?

India’s exposure to climate-related disasters is stark and
well documented. The National Disaster Management
Authority (NDMA) confirms that, out of 36 states and union
territories, 27 are prone to some form of disaster, and
critical coastal and riverine zones face repeated inundation.!
Floods in India are especially destructive; according to In 2025, the state of Punjab was hit by one of its worst floods
IndiaSpend, an average of 1,600 people die annually dueto  in decades. Over 1,650 villages were affected, and more
floods, and the mean annual economic loss is estimated at  than 1.75 lakh acres of farmland were submerged.* Concur-

Journal of Advanced Research in Embedded System (ISSN: 2395-3802)
Copyright (c) 2026: Author(s). Published by Advanced Research Publications




Arora S et .al
J. Adv. Res. Embed. Sys. 2026; 13(1&2)

rently, official reports recorded at least 55 deaths, impacting
2,214 villages and causing crop loss across 192,380 hectares
of land.* These extreme events underscore how localised
hydrology, dam operations, and upstream precipitation
trends combine to overwhelm traditional forecasting and
disaster management systems.

Conventional numerical weather prediction (NWP) and
hy-drological simulation models remain foundational tools
for disaster early warning. However, they often fall short in
deliv-ering hyperlocal, high-frequency forecasts—especially
when observation gaps, computational constraints, or
nonlinearity effects dominate. Against this backdrop,
Artificial Intelligence (Al) and Machine Learning (ML)
methods offer significant promise: they are capable
of synthesising heterogeneous data (satellite, sensors,
geospatial, and socio-economic), learning patterns from
historical extremes, and generating probabilistic forecasts
with quantified uncertainty.

By coupling Al-driven models with structured vulnerability
and exposure databases, an early warning system can
evolve from hazard prediction to impact-based decision
support. Deep architectures such as LSTM, CNN, and
Transformer networks allow us to learn spatio-temporal
dependencies and deliver real-time alerts with improved
accuracy and interpretability. This paper proposes a unified
Al-driven architecture for India, emphasising modular data
ingestion, multi-hazard modelling, and resilience-focused
decision support tailored to India’s unique risk landscape.

Related Work

Al and ML have become increasingly central to modern
hydrometeorological forecasting. Google’s Flood Hub uses
deep learning to extend riverine flood forecasts up to
seven days ahead, serving over 80 countries.> Meanwhile,
NASA’s FIRMS employs convolutional neural networks
(CNNs) to detect wildfire thermal anomalies globally.®
DeepMind’s Weather Transformer has demonstrated
improved precipitation forecasts by leveraging transformer
architectures over purely physics-based ensemble models.”

Beyond flood and wildfire systems, researchers have ex-
plored hybrid frameworks combining meteorology, hydrol-
ogy, and Al. For instance, adaptive machine-learning models
have been used to decode flood generation mechanisms
with minimal features and dynamically adjust to changing
rainfall regimes.? In India, the Ministry of Earth Sciences has
begun integrating Al/ML modules with traditional numerical
weather models for localised forecasting.! Similarly,
platforms such as IIT Delhi’s India Flood Inventory (IFI)°
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and IMD’s gridded datasets'® have become critical enablers
for data-driven hydrological training and validation.

In the domain of tropical cyclones, multiple ML tech-niques
have been proposed. A review of ML-based methods covers
cyclone genesis, track, intensity, and surge forecast-ing,
highlighting both performance gains and interpretability
challenges.' Example models include neural networks
fusing trajectory history with atmospheric reanalysis data
to predict cyclone displacement and deep CNNs for wind-
field reconstruction using satellite imagery.'? Transformer-
based architectures have also been applied for storm-path
prediction in the North Indian Ocean.?

Closer to India, explainable-Al models have been applied
for flood prediction in Kerala using rainfall, soil-moisture,
and topographic features. Random-forest and SVM
classifiers, augmented with LIME-based interpretability,
achieved strong flood/no-flood discrimination accuracy
and improved stake-holder trust in predictions.!* These
experiments demon-strate the potential of coupling
technical performance with explainability to support
disaster-management adoption.

Despite these advances, most operational frameworks
re-main domain-specific—focused on floods, cyclones, or
wild-fires in isolation. They seldom integrate exposure and
socio-economic vulnerability to convert hazard forecasts
into ac-tionable, impact-based alerts. The proposed
architecture aims to bridge this gap by unifying hazard
modelling, vulnerability overlay, and Al-driven decision
support under a single inter-operable pipeline.

System Architecture

The proposed architecture (Fig. 1) integrates three func-
tional layers—Data Ingestion, Al Analytics, and Decision
Support—each designed for modularity and scalability.

Data Ingestion Layer

This layer consolidates meteorological, hydrological, and
satellite data via APIs and message queues. Datasets in-
clude IMD rainfall grids, ISRO INSAT-3D imagery, NASA
GPM/IMERG precipitation, and NOAA IBTrACS cyclone
records [10], [14]-[16]. Automated quality control modules
ensure consistency, and spatial harmonisation aligns inputs
to a unified grid. The integrated Vulnerability Database
adds demographic, infrastructural, and socio-economic
data such as Census-based population density, poverty
indices, health facilities, and transportation accessibility.
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Database links physical hazard modeling with impact
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Al Analytics Layer
The Al analytics engine performs hazard-specific modeling:

e  Flood Forecasting: LSTM-based rainfall-runoff map-
ping combined with CNN-UNet spatial inundation
mod-eling.

e Cyclone Forecasting: Transformer models trained on
atmospheric parameters (SST, vorticity, shear) predict
genesis and track with improved accuracy.

e Wildfire Detection: CNN classifiers on MODIS/VIIRS
thermal bands detect hotspots and estimate potential
spread.

e Heatwave and Drought: RNNs model temperature
anomalies and soil moisture indices for persistence
fore-casting.

Outputs include both deterministic predictions and
uncertainty maps for probabilistic risk communication.

Decision Support Layer

The final layer generates actionable intelligence. GIS dash-
boards visualise hazard maps overlaid with vulnerability
and exposure indices. The system supports CAP-compliant
alerts transmitted via APIls to NDMA, state emergency
networks, and the public through SMS, IVRS, and social
media. A feedback loop captures real-world verification
data, refining subsequent model runs.

Methodology and Implementation
Data Preparation

Data undergo temporal resampling, outlier detection, and
normalisation to a uniform 0.1° grid. Derived features
include antecedent rainfall, soil moisture anomalies, NDVI,
and terrain slope. PCA-based dimensionality reduction
improves compu-tational efficiency.

Model Training

Each hazard module follows a standardised pipeline
with hyperparameter tuning via Bayesian optimisation.
Optimisers such as Adam and RMSProp are used with cyclical
learning rates; early stopping mitigates overfitting. Ensemble
learning aggregates model predictions, and transfer learning
enables adaptation to data-sparse regions. Uncertainty
quantification through Monte Carlo dropout supports
confidence estimation.

Model Governance

A model registry ensures reproducibility. Continuous mon-
itoring detects data drift, triggering automatic retraining
using MLflow and Kubeflow pipelines. Real-time inference
runs on GPU-accelerated clusters, allowing sub-hourly
updates.

Results and Evaluation

Simulated benchmarking using open datasets indicates sub-
stantial performance gains: flood discharge RMSE reduced
by 35%, cyclone track errors reduced by 45%, wildfire
detection accuracy improved to 92%, and heatwave MAE
lowered to 0.15 °C.
Table Llllustrative Performance of Al Models vs.
Baseline Methods Values derived from simulated case
studies; not from operational evaluation

Hazard Metric Al Model Baseline
Floods RMSE (m) 0.21 0.33
Track Error
Cyclones (km) 18 37
Wildfires Accuracy (%) 923 81.5
Heatwaves MAE (°C) 0.15 0.27

Recent Case Studies

e Punjab 2025 Floods: In July 2025, Punjab experienced
one of its worst floods in decades following heavy
monsoon rains and excess water discharge from
upstream reservoirs. According to official and media
reports, over 2,214 villages across the state were
affected, and crops spanning approximately 192,380
hectares were damaged. The death toll exceeded 55,
and losses were estimated in the range of INR 12,000—
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14,000 crore.* This event highlights the importance
of coupling hydrological and meteorological models
with dynamic vulnerability mapping to better predict
downstream impacts

e Kishtwar Flash Flood 2025: A cloudburst in August 2025
over the Chositi region of Kishtwar district (Jammu &
Kashmir) triggered a sudden flash flood that caused
extensive devastation. Reports indicate between 46 and
68 fatalities and hundreds of injuries, while over 200
individuals were initially reported missing.'” The flood
destroyed homes, bridges, and road infrastructure,
underscoring the need for real-time radar—satellite
data fusion and sub-kilometre-resolution now-casting
models capable of identifying rapid cloudburst forma-
tions.

e Uttarakhand Flash Flood 2025:: On 5 August 2025,
extreme rainfall in the Uttarkashi district of Uttarakhand
led to flash floods and multiple landslides, resulting in
at least five confirmed fatalities and over 50 missing
persons.’® This event demonstrated the increasing
occurrence of compound hazards in mountainous
terrain where rainfall, slope instability, and glacial
runoff interact. Integration of digital elevation models
(DEMs) such as CartoDEM with soil saturation indices
can enhance localised early warning capabilities.

e Wayanad Landslides, Kerala 2024: In July 2024,
extreme monsoon rainfall triggered catastrophic
landslides and flash floods in Wayanad, Kerala, resulting
in approximately 420 fatalities, 397 injuries, and 47
persons missing.®* The catastrophe submerged entire
villages and destroyed road networks, highlighting the
challenge of predicting cascade hazards in hilly terrain.

e Vijayawada Floods, Andhra Pradesh 2024: Between
31 August and 9 September 2024, Vijayawada endured
severe flooding from intense downpours, causing at
least 35 deaths and affecting over 2.7 lakh residents.®
The flood exposed vulnerabilities in urban drainage
infrastructure and stormwater management systems.

e Cyclone Biparjoy, June 2023): Cyclone Biparjoy, a
very severe cyclonic storm over the Arabian Sea,
made landfall in June 2023, affecting large parts of
Gujarat and southern Rajasthan. An Al-based spatial
mapping study on rainfall and damage patterns utilised
multi-spectral satellite imagery and reanalysis data to
estimate rainfall footprints and impacted areas across
districts.'? The study demonstrated how deep learning
models can complement conventional cyclone track-
ing by improving post-event analysis, calibration, and
regional vulnerability modelling.

e North India Floods, July 2023: In July 2023, widespread
flooding and heavy rainfall across northern Indian
states resulted in over 125 confirmed deaths from
flood- and rain-related events.?® Analyses indicate that
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anomalous monsoon circulation and terrain-induced
runoff exacerbated flood severity.?

e Sikkim Glacial Lake Outburst, October 2023:: On
3—4 October 2023, the South Lhonak glacial lake
in Sikkim breached its moraines, triggering a rapid
downstream flood wave that destroyed the Teesta
Il dam, submerged bridges, and damaged critical
infrastructure across Sikkim and adja-cent West Bengal
regions.?? The disaster showcases the compound hazard
potential in Himalayan environments, where glacial,
hydrological, and topographic interplay intensify risk.

Datasets
The data ingestion layer uses multiple sources:

e Google Flood Hub / GRRR: River discharge and inun-
dation forecasts.

e NOAA IBTrACS: Global cyclone best-track archive.®

e NASA FIRMS: Fire detection using MODIS/VIIRS.®

e  GPM/IMERG: Rainfall at 0.1° resolution.*®

e INSAT-3D / Sentinel-1 SAR: Cloud-penetrating radar
and thermal imagery for flood mapping.**

e |IT Delhi IFI: Historical flood and impact catalog.®

e IMD Gridded Data: Long-term rainfall and temperature
series.?

e CartoDEM: Digital elevation for hydrological flow mod-
eling.23

All datasets are preprocessed into NetCDF and GeoTIFF for-
mats for consistency and integrated through an ETL pipeline
that fetches, validates, and indexes data for downstream
tasks.

Discussion

The presented case studies confirm the need for multi-
modal, Al-based systems that connect hazard forecasting
with vulnerability analytics. Punjab’s widespread inundation,
Uttarakhand’s terrain-induced flash floods, and Kishtwar’s
cloudburst event reveal the geographic diversity of risk in
India. Integrating local topography, socio-economic data,
and satellite observations within a unified Al pipeline can
improve forecast precision and societal impact.

From an engineering standpoint, scalability and inter-
pretability are paramount. Model explainability via SHAP
or attention visualisation will improve user trust, while
federated learning ensures secure, regionally adaptive
model training. Integration with 5G and loT sensor networks
could enable near-instantaneous data acquisition, closing
the loop between sensing, modelling, and decision-making.

The architecture also presents opportunities for aca-demic—
industry collaboration. Technology firms specialis-ing in
remote sensing or satellite analytics can contribute high-
frequency data feeds, while academic partners can fo-cus
on regional model calibration. Cloud-native architec-tures—
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using platforms such as AWS SageMaker or Google Vertex
Al—offer scalability and resilience during peak disaster
periods, where computational demands spike.

Ethical considerations remain critical. Responsible data
use, informed consent in crowd-sourced data collection,
and transparent model reporting are essential for equitable
disaster management. Embedding ethical Al guidelines
within national frameworks ensures that predictive power
does not outpace governance capacity.

Policy and Governance Integration

The proposed Al-driven early warning architecture comple-
ments both national and international climate-resilience
frame-works through data interoperability, institutional
coordination, and policy alignment.

At the national level, the system directly supports the
objectives of the National Disaster Management Plan
(NDMP-2023), the National Mission on Climate Change, and
the Digital India programme. The NDMP emphasises data-
driven risk assessment and predictive modelling for multi-
hazard environments—precisely the space where Al and ma-
chine learning can provide measurable gains. The modular
data-ingestion layer of the proposed system is designed
for interoperability with existing government platforms
such as the IMD MeteoAPI, ISRO’s Bhuvan Geoportal, and
the NDMA'’s National Disaster Data Bank (NDDB). These
integrations would facilitate automatic synchronisation of
me-teorological, satellite, and vulnerability data streams
without requiring duplicate infrastructure investment.

Furthermore, the framework aligns with India’s National
Framework for Climate Services (NFCS), which promotes
multi-sectoral sharing of weather and climate data to
enhance preparedness. It also supports the goals of the
State Disaster Management Authorities (SDMAs) by enabling
decentral-ised access to forecasts, ensuring that early-
warning intelli-gence reaches district-level responders and
local governance bodies (Panchayats and municipalities).
Through its open API design and CAP-compliant alert
dissemination, the architec-ture can also integrate with
National Alerting Systems and public communication
channels such as Doordarshan, All India Radio, and mobile
networks.

At the global scale, the system aligns with the Sendai
Framework for Disaster Risk Reduction (2015-2030),
particularly Priority 4: Enhancing disaster preparedness
for effective response. By enabling Al-based automation in
impact forecasting and vulnerability mapping, the system
transforms response mechanisms from reactive to proactive
and antici-patory. It further supports the UN Sustainable
Development Goals (SDG 13: Climate Action and SDG 11:
Sustainable Cities and Communities) by advancing climate

adaptation through intelligent infrastructure and digital
governance.

Integration with international data protocols—such as the
Common Alerting Protocol (CAP), the Open Geospatial
Consortium (OGC) standards, and WMOQ’s Global Data-
Processing and Forecasting System (GDPFS)—ensures
in-teroperability for cross-border and transboundary
events like cyclones or riverine floods. The framework’s
adherence to these standards allows data sharing and
decision coordination between agencies like the World
Meteorological Organization (WMOQ), the Asian Disaster
Preparedness Center (ADPC), and the Indian Ocean Tsunami
Warning and Mitigation System (I0TWMS).

Finally, the architecture introduces a governance feedback
loop through its vulnerability database: by quantifying
socio-economic exposure and regional resilience metrics,
it enables policymakers to prioritise investments in
flood control, urban drainage, forest management, and
community-based adapta-tion. This data-driven policy
alignment fosters not only disaster mitigation but also
long-term climate governance grounded in evidence and
transparency.

Conclusion

This research presents a comprehensive, Al-driven early
warning framework that merges advanced machine learning
with multi-source data fusion and socio-economic vulnera-
bility mapping. By integrating meteorological, hydrological,
and satellite datasets with predictive modelling and real-
time analytics, the proposed architecture illustrates how
artificial in-telligence can strengthen India’s climate
resilience and disaster management capabilities.

The architecture moves beyond hazard detection by intro-
ducing a multi-hazard, impact-orientated decision pipeline
that supports actionable intelligence for policymakers,
emergency responders, and local communities. Through
its interoperabil-ity with national systems such as IMD,
ISRO, and NDMA, it provides a scalable foundation for
operational deployment across states and disaster types,
including floods, cyclones, wildfires, and heatwaves. The
inclusion of a vulnerability database ensures that risk
communication becomes equi-table—prioritising the most
exposed populations and critical infrastructure.

Future research will extend this framework toward real-time
implementation, emphasising distributed model training
and sensor integration through loT networks for high-
frequency data assimilation. Additionally, incorporating
reinforcement learning and hybrid physics—ML models
could improve fore-cast interpretability and uncertainty
quantification. Expanding this approach to other South
Asian countries will enable cross-border hazard modelling
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and cooperative disaster response under shared river basins
and climatic systems.

From a governance perspective, the integration of Al-driven
systems with the Sendai Framework and the UN SDGs
establishes a foundation for evidence-based climate adapta-
tion. Ethical deployment—ensuring transparency, fairness,
and explainability in Al predictions—will remain critical as
the framework evolves from research to operational use.
Ulti-mately, this study envisions a transition from reactive
disaster management toward anticipatory, data-informed
governance, positioning Al as a cornerstone of sustainable
resilience in India and beyond.

Future Work and Research Directions

Future research will focus on developing explainable Al
(XAl) layers to enhance trust in automated warnings, im-
proving fairness and bias detection across socio-economic
groups and extending the framework to include secondary
hazards such as landslides and glacial lake outburst floods
(GLOFs). Integration with loT-based micro-sensor networks
and 5G/LEO satellite links could allow near-real-time model
calibration.

At the algorithmic level, federated learning and edge-
Al deployments can decentralise processing for rural or
connectivity-limited regions. Further, inclusion of language
models for natural language summarisation of disaster bul-
letins could aid accessible communication during emergen-
cies. Collaboration with NDMA, ISRO, and NITI Aayog is
envisioned for pilot-scale deployment.
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