Estd. 2009

National Conference on Behavioural Economics and Intelligent Decision Systems for
Climate Change and Sustainable Development
Journal of Advanced Research in Embedded System

Volume 13, Issue 1&2 - 2026 R

qesearch 2,

SRS
-

Adva,,
Suon®

Research Article

A Comparative Study of ARIMA and LSTM
Models for Short-Term Forecasting of the El
Nino Modoki Index

Shanthiprasad lain', Prashant Kumar®

12Associate Professor, Department of Applied science, Mathematics and computing, National Institute of Technology Delhi,

Delhi, India

DOI: https://doi.org/10.24321/2395.3802.202601

I NFO

Corresponding Author:

Prashant Kumar, Department of Applied science,
Mathematics and computing, National Institute
of Technology Delhi, Delhi, India

E-mail Id:

prashantkumar@nitdelhi.ac.in

Orcid Id:
http://orcid.org/0000-0001-8480-7490

How to cite this article:

Jain S, Kumar P. A Comparative Study of ARIMA
and LSTM Models for Short-Term Forecasting of
the El Nifio Modoki Index. J Adv Res Embed Sys
2026; 13(1&2): 73-79.

Date of Submission: 2025-10-04
Date of Acceptance: 2025-10-28

ABSTRACT

To get a handle on global climate patterns, we need to accurately forecast
the El Nifio Modoki Index (EMI). This study compares two methods
for predicting the EMI’s short-term behaviour based solely on its
historical data. We pitted a classic statistical method, the AutoRegressive
Integrated Moving Average (ARIMA) model, against a modern deep
learning approach using a Long Short-Term Memory (LSTM) network.
We trained both models on monthly EMI data from 1982 to 2022 and
then tested how well they could predict the period from 2023 to 2025.
Our results showed that the ARIMA(2,0,0) model works as a solid,
understandable baseline, capturing the main movements of the index
with a Root Mean Squared Error (RMSE) of 0.4338 and an R-squared
(R?) of only 0.0533. The LSTM network, however, was much better at
handling the quirky, non-linear nature of the data, leading to a far more
accurate forecast with an RMSE of just 0.0820 and an R? of 0.9658.
Ultimately, while a simple ARIMA model is useful as a benchmark, our
work makes it clear that LSTM networks can offer a major leap forward
in forecasting accuracy for complex climate indicators like the EMI.

Keywords: El Nifio Modoki Index, ARIMA, LSTM, time series
forecasting, univariate model

Introduction

able to predict El Ninthe importantthe Elothe EINifio Modoki
Index (EMI) is an important goal to adopt ouNifioadapt

El Nino-Southern oscillationNifio-Southern Oscillation
(ENSO) stands out as a single mNifio-Southern Oscillationthe
singleost important driver of global climate change from
one year to next yearthe singlethe next.. A unique taste
of this phenomenon, El Nino Modoki, creates a different
pattern of warming in the tropical Pacific, yet its ripple
effects are felt worldwide. These incidents can reopen the
weather patterns everywhere, which affects everything
from rain to temperature, anthe next.temperature andd
has a known relationship with important Indtemperature
andthe importantian monsoon. It is no surprise that being

tor changing climate and manage our resources
wisely. But accurately predict EMadapt topredictingl,
especially in advance, is a hard nut to crack.! Most of
the top levelpredicting-level prediction systems bends
-leveldependon large -scaledepend-scale,, complex climate
models or refined machine learning methods, which require
a full menu of climate data to work.? While these larger,
multi-different approaches are certainly powerful, they
can be slow, co-scale,slow andmputationally expensive
andslow andexpensive and can be a real headache to
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breed without access to the same giant dataset. This
study takes a separate, more streamlined path. We are
asking a direct question: How much can we make an EMI
prophecy using only our previous data? To find out, we
are against a classic statistical workhorse, the ARIMARIMA
model, and and a modern deep learning power station,
the LSTMLSTM network.® By using a simple, univariate
method and using the latest available data, we hope to set
a clear and reliable baselinefor someone to create short-
term-term EMI predictions.The key contributions of this
study are twofold: first, we provide a clear, head-to-head
benchmark for univariate EMI forecasting by comparing the
classical ARIMA model against a modern LSTM network.
Second, by using the latest available data through 2025, we
demonstrate the significant leap in predictive accuracy that
LSTMs offer (RMSE 0.082) over traditional linear methods
(RMSE 0.4338) for this complex index. The remainder of
this paper is organised as follows: Section Il reviews the
relevant literature.* Section Ill details the data source and
the methodology for both the ARIMA and LSTM models.
Section IV presents the forecasting results. Section V
discusses the implications and trade-offs of these results,
and Section VI concludes the study with a summary of our
findings and directions for future research.

Literature Review

Forecasting El Nifio events is a long-standing challenge
in climate science, and a significant body of literature
has been dedicated to this challenge, reflecting a clear
methodological divide. On one side are the classic statistical
models like the AutoRegressive Integrated Moving Average
(ARIMA) model, which we use in this study. They remain
valuable due to their mathematical transparency and
interpretability, making them an excellent baselinel. Their
primary weakness, however, is the rigid assumption of
linearity and stationarity, which is a major handicap when
modeling the complex, non-linear, and non-stationary
dynamics of the climate system.®

On the other side are the computationally heavyweights.
This includes the massive dynamical models (CGCMs) that
simulate planetary physics, and the newer, data-driven
machine learning (ML) methods. Recent literature has
extensively explored this latter category. Numerous studies
have directly compared classical statistical models against
various ML approaches for El Nifio-related forecasting. For
instance, recent comparisons focusing on ENSO prediction
have found that deep neural network models, including
Feed Forward Neural Networks (FFNN) and Support Vector
Regressors (SVR), demonstrate superior performance over
traditional statistical approaches.®

Within the machine learning camp, Recurrent Neural
Networks (RNNs) have emerged as a particularly promising
tool, given their architecture is explicitly designed for
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sequence data. Long Short-Term Memory (LSTM) networks,
a specialised type of RNN, are theoretically well-suited for
climate data, as they can learn and remember patterns
over long time scales. High-impact studies have shown that
deep learning models can produce skilful ENSO forecasts
for lead times of up to one and a half years, outperforming
state-of-the-art dynamical forecast systems.” This has led to
the development of sophisticated hybrid models that seek
to combine the linear-modelling strengths of ARIMA with
the non-linear capabilities of LSTMs (e.g., an ARIMA-LSTM
hybrid), which often report state-of-the-art forecasting
accuracy. This hybrid methodology, which uses ARIMA
to model the linear components and a neural network
to model the non-linear residuals, has proven to be an
effective way to improve overall forecasting accuracy.?

While these advanced and hybrid models demonstrate
the frontier of forecasting skill, their complexity can make
them difficult to interpret and resource-intensive to train.
Furthermore, they often rely on multivariate inputs, making
it difficult to isolate the predictive power of a given model
architecture from the power of its input features. This is
where our research is positioned.® We step back from
multivariate inputs and hybrid architectures to establish
a clear and updated performance baseline. This study
addresses a fundamental question: in a direct, univariate
comparison using the most recent EMI data, how does
the classic, interpretable ARIMA model stack up against
a modern, non-linear LSTM network? Our goal is to set
a clear benchmark, isolating the specific capabilities of
each modeling philosophy and providing a reference
point against which more complex, future models can be
evaluated.?®

Data And Methodology
Data Source and Exploratory Analysis

The foundation of this study is the Monthly El Nino Modoki
Index (EMI) dataset, which was obtained from the public
data repository of the Japanese Agency for Marine-Earth
Science and Technology (Jamstec). We used a full historical
record of EMI values spread to the most recent data point
in January 1982 and in 2025. Before the performance of
any modelling,, we conducted an exploratoryy data analysis
(EDA) to understand the underlying characteristics of the
time chain. The data was plotted for visualinspection for
trends, seasonalityity and any clear structural breaks. The
chain moves upand downin the vicinity around the zero,
which is specific to the discrepancy indices. Many times its
it is an important condition for for stability for the chain
model — the statistical properties of the chain mean, such
as mean and variance, do not change over time. We tested
for it using the formallyally enhanced Dickey-Fuller (ADF)
test. The trial received a p-value of less than 0.05, making
us confidently reject the null hypothesis of non-stagnation.
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This discovery was important, as it was confirmed that
the data did not need to be separated before being used
in our model.*

Data Statistics and Feature Engineering

An exploratory analysis of the training data (1982-2022)
revealed key statistical properties, which are summarized
in Table I. The data’s mean is nearly zero, and the standard
deviation reflects the moderate volatility of the index.

Table I.Descriptive Statistics for EMI Training Data

(1982-2022)
Statistic Value
Observations 492
Mean -0.01
Std. Deviation 0.53
Minimum -1.18
Maximum 1.95
ADF Statistic -7.23
p-value <0.01

For the LSTM model, the time series data had to be
restructured from a simple sequence into a format suitable
for supervised learning. We accomplished this using a sliding
window approach for feature engineering. A sequence of
the 12 previous months of EMI data was used as the input
feature vector to predict the EMI value of the subsequent
month. This 12-month window was chosen specifically to
help the model identify and learn any potential annual
cycles or seasonality present within the climate data.?

ARIMA Model: Theory and Implementation

Our classical forecasting benchmark is the AutoRegressive
Integrated Moving Average (ARIMA) model. An ARIMA(p,d,q)
model has three components: the Autoregressive (AR)
term (p), the Integrated (I) term (d), and the Moving
Average (MA) term (q). The AR component models the
relationship between an observation and a number of
lagged observations. The | component refers to the use of
differencing to make the time series stationary. The MA
component models the relationship between an observation
and the residual errors from a moving average model
applied to lagged observations. The general form of the
model is expressed as:

Our implementation followed a structured, multi-step
process:

e  Stationarity Check: As confirmed by the ADF test, the
series was stationary, so the differencing order (d) was
set to 0. This simplifies the model to an ARMA(p,q)
model.

e Parameter Identification: To determine the optimal
values for p and g, we analyzed the Autocorrelation

Function (ACF) and Partial Autocorrelation Function
(PACF) plots. The ACF plot measures the correlation
between the time series and its lagged versions, while
the PACF plot measures the correlation between an
observation and its lags after removing the effects of
intervening lags. For a pure AR process, the PACF plot
will show a sharp cutoff after a certain number of lags
(p), while the ACF tails off. Our analysis revealed a
clear cutoff in the PACF plot after lag 2 and a gradually
decaying ACF, which strongly indicated that an AR(2)
process was the most appropriate choice. We,
therefore, set p=2 and q=0.

e Model Fitting and Diagnostics: Based on our analysis, we
fitted an ARIMA(2,0,0) model to the training data (1982-
2022). After fitting, we performed diagnostic checks on
the model’s residuals to ensure they resembled white
noise, meaning there was no remaining autocorrelation
left to model. A visual inspection of the residual plot
and a Ljung-Box test confirmed the adequacy of our
model fit.*?

LSTM Model: Architecture and Training

For our deep learning approach, we employed a Long
Short-Term Memory (LSTM) network. LSTMs are a type of
Recurrent Neural Network (RNN) specifically designed to
overcome the vanishing gradient problem, allowing them
to learn long-range dependencies in data. An LSTM cell
contains three critical structures called gates: a forget gate,
which decides what information to discard from the cell
state; an input gate, which decides what new information
to store; and an output gate, which determines the next
hidden state. The flow of information is mathematically
defined by the following equations:

e Forget Gate:

£= oW - [he_pox.] + by)

e Input Gate:

ip = o(W; - [hg_yp. 2] + By)

e (Candidate cell state:

ip = o(W; - [hg-yp x| + B;)

e (Cell state update:

C: = fr @C{r—l} + i O] N{C}t
e Output Gate:

or = (W, - [hge-13,x:] + b,)
e Hidden state:

hy = oy O\tanh(C.)

Typically, the forget and input gates use a sigmoid activation
function to output a value between 0 and 1, while the cell
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state and output gates often use a an activation function.
This gating mechanism allows the network to selectively
remember or forget information over time.

To prepare the data for the LSTM, we first scaled the entire
series to a [0, 1] range using a Min-Maxanmin-max scaler.
This normalizationmin-maxnormalisation is essential for
neural networks normalisationnetworks,as it ensures stable
and efficient training. We then restructured the time series
into a supervised learning problem using a sliding window
approach. We defined a look-back window of 12 time steps,
meaning the model used the EMI values from the previous
12 months as input features to predict the EMI value of the
subsequent month. This 12-month window was chosen to
help the model capture any potential annual seasonality
in the datadnetworks,ata.'*

Our network architecture was kept intentionally simple
to provide a clear baseline: a single LSTM layer containing
50 hidden units, followed by a standard Densedata.dense
layer with a single neuron denseneuroneto output the final
continuous value. The choice of 50 units is a common starting
point that provides sufficient capacity to model complex
patterns without being excessively prone to overfitting for a
univariate time series. We trained the model using the highly
effective ‘adam’ optimizer,neuroneoptimiser, which is an
adaptive learning rate algorithm that is well-suited for a wide
range of problems. We also minimizedoptimiser,minimised
the ‘mean_squared_error’ loss function. To prevent
overfitting, we employed an early stopping mechanism,
which monitored the performance on a validation subset of
the training data and halted the training process once the
validation loss stopped improving.Tminimisedimproving.
ypically, the forget and input gates use a sigmoid activation
function to output a value between 0 and 1, while the cell
state and output gates often use a improving. an activation
function. This gating mechanism allows the network to
selectively remember or forget information over time.

To prepare the data for the LSTM, we first scaled the entire
series to a [0, 1] range using a Min-Maxanmin-max scaler.
This normalizationmin-maxnormalisation is essential for
neural networks normalisationnetworks,as it ensures stable
and efficient training. We then restructured the time series
into a supervised learning problem using a sliding window
approach. We defined a look-back window of 12 time steps,
meaning the model used the EMI values from the previous
12 months as input features to predict the EMI value of the
subsequent month. This 12-month window was chosen to
help the model capture any potential annual seasonality
in the datadnetworks,ata.

Our network architecture was kept intentionally simple
to provide a clear baseline: a single LSTM layer containing
50 hidden units, followed by a standard Densedata.dense
layer with a single neuronedensee to output the final
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continuous value. The choice of 50 units is a common
starting point that provides sufficient capacity to model
complex patterns without being excessively prone to
overfitting for a univariate time series. We trained the model
using the highly effective ‘adam’ optimiser,optimiser, which
is an adaptive learning rate algorithm that is well-suited for
a wide range of problems. We also minimised the ‘mean_
squared_error’ loss function. To prevent overfitting, we
employed an early stopping mechanism, which monitored
the performance on a validation subset of the training data
and halted the training process once the validation loss
stopped improving.'®

Experimental Setup and Evaluation

We split our data by time: everything from 1982 to 2022
went into the training set, and the period from 2023 to
2025 was held back as our test set. To comprehensively
judge which model did better, we used several standard
evaluation metrics on the test set predictions. All of our
analysis and model development was carried out using
Python, relying on key open-source libraries including
pandas for data manipulation, statsmodels for the ARIMA
implementation, and TensorFlow/Keras for building the
LSTM network.

e Root Mean Squared Error (RMSE): Used to penalize
larger errors more heavily. The formula is:

RMSE G)E?:l(yi — ¥

Mean Absolute Error (MAE): Provides a direct measure
of the average forecast error magnitude. The formula is:

_1 =
MAE = HE?=1 | vi — il

Mean Absolute Percentage Error (MAPE): Measures the
average error as a percentage of the actual values.

MAPE = wn%z” Yi~Fi
n i=1 Yi

R-squared (R?): Represents the proportion of the variance
in the actual EMI that is predictable from the forecast. A
value closer to 1 indicates a better fit.

The formulais gre=1- 203
:1(.‘)7:"5’:)

In these formulas, is the real EMI value and is the predicted
value. All of our analysis and model development was carried
out using Python, relying on key open-source libraries
including pandas for data manipulation, statsmodels for
the ARIMA implementation, and TensorFlow/Keras for
building the LSTM network.
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Results
ARIMA Model Performance

The ARIMA(2,0,0) model, fitted on the 1982-2022 training
data, was used to generate one-step-ahead forecasts for the
2023-2025 test period. Quantitatively, the model achieved
a Root Mean Squared Error (RMSE) of 0.4338 on the test
set. The other performance metrics were a Mean Absolute
Error (MAE) of 0.3623, a Mean Absolute Percentage Error
(MAPE) of 1058.57%, and an R-squared (R?) value of 0.0533.

A visual comparison of the forecast against the observed
EMI values (Figure 1) shows that the model successfully
captured the general trend and cyclical nature of the index.
However, the forecast tended to smooth out extreme peaks
and troughs, underestimating the magnitude of sharp
fluctuations—a common limitation of linear models when
faced with abrupt shifts. Diagnostic checks on the model’s
residuals, including a Ljung-Box test, showed no significant
remaining autocorrelation, confirming the model’s fit was
adequate.

Updated ARIMA(2.0,0) Forecast vs Actual EMT

EMI Value

2025)
EMI (2023.2025)

Figure 1.ARIMA(2,0,0) forecast vs. actual observed
EMI for the test period (2023-2025)

LSTM Model Performance

The LSTM network, trained on the same data split,
demonstrated a significantly stronger ability to model the
non-linear dynamics of the EMI time series. The final RMSE
on the test set was 0.0820, a substantial improvement
over the ARIMA baseline. This superior performance was
reflected across all metrics: the Mean Absolute Error (MAE)
was 0.0691, the Mean Absolute Percentage Error (MAPE)
was 201.15%, and the R-squared (R?) value was 0.9658.

Figure 2 shows the LSTM'’s forecast against the actual
EMI values. The forecasted line tracks the observed data
with much higher fidelity than the ARIMA model, closely
following both the direction and magnitude of the monthly
changes. While the model still occasionally smoothed the
sharpest turning points, its ability to capture the nuances
of the EMI’s behaviour was clearly superior. The training
history plot (Figure 3) indicates that the model converged
well without significant overfitting, as the training and
validation loss curves decreased and flattened out together
around epoch 75.

LSTM Forecast vs Actual (Test Period)

— Actual EMI
—— LSTM Forecast

EMI
s

2023-01 2023-05 2023-09 2024-01 2024-05

Date

2024-09 2025-01 2025-05 2025-09

Figure 2.LSTM forecast vs. actual observed EMI for
the test period (2023-2025)

Training History

—— Train Loss
—— Validation Loss

0.125

— 0100
m}

Si

£ 0075

Loss (

0.050

0.025

0 25 50 75 100 125 150 175

Epoch

Figure 3.LSTM model training and validation loss over
182 epochs

Discussion

To provide a direct visual comparison of the model’s
predictive accuracy, the final RMSE values for the test
period are plotted in Figure 4. The chart clearly illustrates the
substantial performance advantage of the LSTM network,
which achieved an error value approximately 5.3 times
lower than the classical ARIMA model.

RMSE Comparison Between ARIMA and LSTM Models

0.434

0.4 4

RMSE Value
o o
~N w

0.1 4 0.082

0.0 4

ARIMA(2,0,0)

LsT™™M

Forecasting Model

Figure 4.Comparative RMSE on Test Data (2023-2025)

Our results present a clear narrative on the trade-offs
between classical statistical models and modern deep
learning networks for univariate EMI forecasting. The
ARIMA(2,0,0) model performed admirably, establishing
a robust and interpretable baseline with an RMSE of
0.4338 and an MAE of 0.3623. Its ability to capture the
primary cyclical patterns of the EMI confirms the value of
traditional time series methods. For applications where
model simplicity, rapid training, and clear parameter
interpretation are critical, the ARIMA model remains a highly
practical choice. However, its extremely low R-squared value
of 0.0533 indicates it explained only 5.3% of the index’s
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variance, highlighting the inherent limitations of a linear
model applied to a complex, non-linear system.

In stark contrast, the LSTM network delivered a significantly
more accurate forecast, achieving a remarkable RMSE of
0.0820 and an MAE of 0.0691. This superior performance
can be directly attributed to its architectural design. The
high R? value of 0.9658 confirms that the LSTM was able
to explain 96.6% of the variance in the EMI—a massive
improvement over the linear model. Similarly, the LSTM'’s
MAPE of 201.15% is a clear relative improvement over the
ARIMA’s 1058.57% (the high values are due to the index’s
proximity to zero). The LSTM’s ability to learn long-range
dependencies and model non-linear relationships allowed
it to track the nuances of the EMI’s behaviour with much
higher fidelity.

However, the advantages of the LSTM come with practical
trade-offs. The model is computationally more expensive
to train and requires careful hyperparameter tuning to
achieve optimal performance. Furthermore, its “black
box” nature makes it less interpretable than the ARIMA
model, a potential drawback in scientific applications where
understanding the “why” behind a prediction is as important
as the prediction itself.

It is also crucial to acknowledge the primary limitation of
our study: its univariate approach. By relying solely on
the past values of the EMI, both models ignore external
climate drivers that could enhance forecast skill, such
as global sea surface temperature patterns, subsurface
ocean heat content, or atmospheric pressure anomalies.
Future work should focus on incorporating these exogenous
variables into multivariate LSTM frameworks. Additionally,
exploring hybrid models that combine the linear strengths
of ARIMA with the non-linear capabilities of LSTMs could
offer a promising avenue for further improving forecasting
accuracy.

Conclusion

This study presented a comparative analysis of ARIMA and
LSTM models for the short-term, univariate forecasting of
the El Nifio Modoki Index. Our findings show that while
the classical ARIMA(2,0,0) model provides a robust and
interpretable baseline with an RMSE of 0.4338 and an R? of
0.0533, the LSTM network offers a substantial improvement
in predictive power, achieving a significantly lower RMSE
of 0.0820 and an R? of 0.9658. The primary conclusion of
this work is that deep learning models like LSTMs are highly
effective at capturing the complex, non-linear dynamics
inherent in climate time series, offering a clear advantage
over traditional linear methods.
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Future research should build upon this baseline by (1)
experimenting with multivariate inputs such as sea surface
temperature and subsurface heat content; (2) testing hybrid
models that combine the strengths of both ARIMA and
LSTM components; and (3) developing ensemble forecasts
to provide robust probabilistic uncertainty quantification
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